
The Little LISPer

by
Daniel P. Friedman

WILLIAM GEAR: The Little LISPer is a nonpro-

grammed text for the nonprogrammer or program-

mer who likes the feature that books used to have--

one can curl up (near the refrigerator) and read it

from front to back for a pleasurable introduction

to LISP and its ideas. Evaluate it--you’ll quote it.

MARK ELSON: Dan Friedman’s LISP primer...provides by far the finest intro-

duction to LISP that I have seen. Its excellence emanates along two different di-

mensions:

(1) The question-answer technique is beautifully exploited...Friedman blends de-

velopment and redundancy, which the student needs for recall and logical

guesswork, very effectively. Delicious juicy carrots seem to dangle at every

step.

(2) The book has style, but that of course is not enough. The order of develop-

ment of topics is what allows the style to be effective. Large languages can be

tutorially developed from many different directions; LISP evolves so much

power from so few basic features that a very delicate chain of development is

necessary to bring comprehension and appreciation of that power. The LISPer

achieves this admirably.
In short, the book is excellent in both coverage and style, a self-sufficient intro-

duction to LISP for any logical human being from 8 to 80.

HAROLD STONE: The Little LISPer by Daniel Friedman...is both informative

and enjoyable. It is an unusual book that definitely has a place in computer

science education and should...find wide acceptance as a supplement to a pro-

gramming languages course or a course on LISP. It does not serve as a reference

manual...On the other hand, it has characteristics that no other text on LISP has.
It explains the essential features of the language in a manner that is easily digested,

and it is done at just the right level for reaching students.

INDEX

PRINCIPLES COMMANDMENTS

Page

Principle No. 1 2 Commandment No. 1
Principle No. 2 2 Commandment No. 2

Principle No. 3 3 Commandment No. 3
Principle No. 4 4 Commandment No. 4
Principle No. 5 5 Commandment No. 5

Commandment No. 6
Commandment No. 7
Commandment No. 8

FUNCTIONS

Page Page

ADDVEC 28 MATPLUS 53

AND 42 MAXVEC 32

APPEND 57 MEMBER 9

ATOM 4 MEMBER* 43

MINIVEC 56

BUILD 48 MINSMAT 54

MULTIINSERTL 38

CAR 2 MULTLINSERTR 37

CARTES 54 MULTIREMBER 36
CDR 2 MULTISUBST 38

CDRVEX 57

COMPLEMENT 48 NOT 40
CONS 3 NULL 4

DEPTH 57 OCCUR 38
DIFFERENCE 27 OCCUR* 41

DIMENSIONS 53 ONEP 38

DISTRIB 57 ONE-TO-ONE 50
DOESINTERSECT 47 OR 42

EQ 4 PICK 33
EQUAN 43 PLUS 27
EQN 26

EQSET 47 QUOTIENT 30
EQUAL 44
EXPT 33 RAC 56

RDC 56
FIRST 48 REMAINDER 33

REMBER 16
GREATERP 26 REMBER* 40

REMPICK 35
INSERTL 23 REVLAT 51
INSERTL* 42 REVREL 48

INSERTR 23

INSERTR* 40 SCALMAT 52

- INTERSECT 48 SCALVEC 57

INTERSECTALL 55 SECOND 48

ISFUN 49 SMALL 56
ISLAT 6 SNOC 56

ISPALIN 51 SORTUP 53

ISSET 46 SUBSET 47

ISZEROMAT 52 SUBST 23

ISZEROVEC 57 SUBST* 41

LEFTMOSTAT 40 TIMES 28

LENGTH 33 TRANSPOSE 56
LESSP 33

UNION 48

MAKALAT 35

MAKAVEC 35 VECPLUS 31

MAKESET 46

The Little LISPer

by

Daniel P. Friedman

Indiana University
Bloomington, Indiana

with

Phillip S. Blackerby
Robert J. King

Abraham Goldberg

David L. Walrath

DEDICATION

To Patrick Suppes for the hours of pleasure his book, Introduction to Logic, has made possible.

ACKNOWLEDGMENTS

Many thanks to John McCarthy, Mike Greenawalt, John Howard, Terry Pratt,

David Musser, William Gear, Mark Elson, Harold Stone, Jonathan Slocun,

Juny Armus, Bob Wesson, and Marylin Sealy for their extremely helpful
comments about The Little LISPer. Grateful appreciation to Ben

Shneiderman and Steve Mitchell for believing in this unorthodox approach
to LISP. Thank you to Bill Cohagan who taught me LISP and to Ann and
Frances Patterson for their careful typing and proofreading of this
manuscript. I am greatly indebted to Patrick Mahaffey for his futuristic
ideas of teaching LISP to public affairs graduate students and to John
Gronouski, Dean of the Lyndon Baines Johnson School of Public Affairs,

who was persuaded to try the experiment. I want to thank the four public
affairs graduate students, Phillip S. Blackerby, Robert J. King, David L.

Walrath, and Abraham Goldberg who not only were students in the “quickie”
course but also persevered with me an additional week for the completion
of the first draft. I especially want to thank Abraham Goldberg who

contributed his editing talents and novice perspective for that week.
Above all, I want to thank my wife Mary for her understanding, encouragement,
and concern for my well-being during the completion of this manuscript.

© 1974, Science Research Associates, Inc.- All rights reserved.

Printed in the United States of America '

Library of Congress Catalog Card Number: 73-91284

ISBN: 0-574-19165-8

TABLE OF CONTENTS

PREFACE

INTRODUCTION

1. TOYS

2. DO IT, DO IT AGAIN, AND

AGAIN AND AGAIN...

3. THE MIGHTY CONS

4. NUMBERS GAMES

5. THE MULTICHAPTER CHAPTER

6. *OH MY GAWD*

7. FRIENDS AND RELATIONS

8. "HELP" IS ON THE WAY, OR

WELCOME TO THE HAMMOCK

CONCLUSIONS

REFERENCES

iv

14

25

36

40

46

51

58

58

PREFACE

The fundamental structure of the LISP programming:
language was derived from the abstract notions of

lambda calculus and recursive function theory by John
McCarthy. His goal was to produce a programming
language with a powerful notation for defining and
transforming functions. Instead of operating on
numeric quantities, LISP was designed to manipulate
abstract symbols, called atoms, and combinations of

symbols, called lists. The expressive power of the
language was recognized by a small number of research-
ers who were primarily concerned with difficult symbolic
manipulation problems in artificial intelligence. The
unorthodox nature of LISP contributed to the development
of a narrow cult of LISP enthusiasts among the artifi-
cial intelligentsia. Aithough compilers for LISP were
available for a wide variety of computers, early com
puter scientists were mainly concerned with the number-
crunching aspect of machines. More recently symbolic

manipulation problems have risen in importance and the

increased complexity of the problem solving tasks
assigned to the computer has prompted widespread

interest in LISP.

Simultaneously, the increased number of students
doing advanced work in computer science has focused
academic interest on LISP. Courses on programming
languages (such as I2 in the ACM Curriculum 68)
have become the regular diet of undergraduate and
graduate computer science majors. In these courses
the goal was to teach the concepts of LISP in an
organized and appealing manner. Unfortunately, the

available texts required a great deal of tedious
finger exercises before the meat of the course was

accessible. Dan Friedman's Little LISPer provides
a thoroughly palatable introduction to LISP with
‘the emphasis on the elusive, but profound, concepts.
The reader is continually challenged and is highly
motivated to read on until the controlled confusion
is resolved. By encouraging discovery, the author
ensures that the student's interest is always at

its peak. Finally, by providing instant feedback,
the student's mastery of the material is guaranteed.

Ben Shneiderman
Department of Computer Science
State University of New York at Stony Brook

INTRODUCTION

At an undergraduate curriculum design meeting two
or three years ago, a professor of numerical analysis,
Dr. Richard Bartels, expressed this opinion: "A stu-
dent with an undergraduate degree in Computer Science
who has not learned LISP is culturally deprived."
Currently LISP is employed in a major proportion of
all artificial intelligence research: computational

linguistics, robotics, pattern recognition, general-
ized problem solving, theorem proving, game playing,
algebraic manipulation, etc. While artificial intel-

ligence comprises only one area of computer science,
it is nevertheless a major subfield. Moreover, there

is hardly any area in computer science which has been
unaffected by LISP.

The Little LISPer is a programmed text based on
lecture notes from a two-week "quickie" introduction
to LISP for students with no previous programming
experience and an admitted dislike for anything
quantitative; many were preparing for careers in
public affairs. The purpose of the course, and

therefore of this book, is to teach the student how

to think "recursively."

"Writing programs recursively in LISP is pattern
recognition." Our attempt is to verify this state-
ment within the covers of this book. Since our only
concern is recursive programming, our treatment is

limited to the why's and wherefore's of a few LISP

functions, specifically, CAR, CDR, CONS, EQ, ATOM,

NULL, NUMERP, ZEROP, ADD1, SUB1, AND, OR, NOT, and

COND. The Little LISPer is not a complete book on
LISP. In fact, the formal statement of the defini-
tion of these functions can be given on two pages.
Hence our promise to you the reader is two pages

fion and technique.

GUIDELINES FOR THE READER

You should not rush through this book. Read
carefully, because valuable hints are scattered
throughout the text. Do not read the book in less
than three sittings unless you are already familiar
with LISP but are not a "LIiSPer." Read systemati-
cally. If you do not fully understand one chapter,
you will understand the next one even less. The
problems are arranged according to their difficulty;
it will be difficult to solve later ones before you

have solved those previous.

DO NOT HESITATE TO CUESS. “This book is based on
intuition, and yours is as good as anyone's. We
expect you to guess. Occasionally we make you guess
before giving the answer, either because we do not
expect you to know an answer at a particular stage,

or because we want you, in case you guessed wrongly,
to slow down and look back for what you missed earlier.

“No formal definitions are given in this book. We
believe that you can form your own definitions and
will thus remember them and understand them better
than if we had written each one for you. But be
sure you know and understand the Principles and
Commandments thoroughly before passing them by. The
key to learning LISP is "pattern recognition." The
Commandments simply point out the patterns that you

will have seen already. Early in the book, some
concepts are narrowed for simplicity; later, they
are expanded and qualified. You should also know
that, while everything in the book is true LISP,

LISP itself is more general and incorporates more
than we could intelligibly cover in an introductory

text. After you have mastered this book, you can

read and understand the more advanced and complete
books written on the subject.*

We do.not tell you in this book how to get access
to LISP on your local computer system or even suggest
that you have a computer handy while you read it. If,

however, you want to interact with a computer while

you read, get in touch with the systems personnel at
your local computation center. They will be happy to
show you the procedures that are specific to their

LISP. In spite of local variations, however, LISP is

LISP and is basically the same throughout the world.

Food appears in many of our examples for two
reasons. First, food is easier to visualize than

abstract symbols. (This book is not good to read
while dieting.) We hope the choice of food will
help you understand the examples and concepts we
use. Second, we want to provide you with a little
distraction. We know how frustrating the subject
matter can be, and a little distraction will help
you keep your sanity.

DO _NOT GIVE UP EASILY. LISP operates on the
"lightning principle." The concepts of LISP will
strike you suddenly when you are almost ready to

give up. Once you have been struck, everything
will fall into place. Be sure you understand
chapters 2 and 8. Once you fully understand the
concepts of "Do it, do it again, and again, and
again..."" and " 'Help' is on the way" or "Welcome
to the hammock," you understand most of LISP.

So you are ready to start. Good luck! We hope

your brain will enjoy the exercises waiting for it

on the following pages.

Bon _appétit!

*See references at the end of the book.

1.4)

1.5)

1.6)

1.7)

1.8)

1.9)

1.10)

1.11)

1.12)

1.13)

1.14)

1.15)

1.16)

1.17)

CHAPTER 1; TOYS

Is it true that this is an atom? Yes,
ATOM because ATOM is a string of characters beginning

with an A.

Is it true that this is an atom? Yes,
TURKEY because TURKEY is a string of characters

beginning with a letter.

Is it true that this is an atom? No,

1492 since 1492 is a string of characters beginning
with a digit.
Note: Numbers are not atoms yet.

Is it true that this is an atom? No,
3TURKEYS since 3TURKEYS is a string of characters beginning

with a digit.

Is it true that this is an atom? Yes,
L because L is a string of --one-- characters

beginning with a letter.

Is it true that this is a list? Yes >

(ATOM) because (ATOM) is an atom enclosed by parentheses.

Is it true that this is'a list? Yes,
(ATOM TURKEY OR) because it is a collection of atoms enclosed by

parentheses.

Is it true that this is a list? No,
(ATOM TURKEY) OR since this is only two S-expressions not enclosed

by parentheses.
The first one is a list containing two. atoms,

and the second one is an atom.

Is it true that this is a list? Yes,
((ATOM TURKEY) OR) because the two S-expressions are now enclosed

by parentheses.

Is it true that this is an S-expression? Yes,
XYZ because all atoms are S-expressions.

Is it true that this is an S-expression? Yes,
(X ¥ 2) because it is a list.

Is it true that this is an S-expression? Yes,
((X Y) Z) because all lists are S-expressions.

Is it true that this is a list? Yes,
(HOW ARE YOU DOING SO FAR) because it is a collection of S-expressions

enclosed by parentheses.

How many S-expressions are in the list 6
(HOW ARE YOU DOING SO FAR) HOW, ARE, YOU, DOING, SO, and FAR.

and what are they?

Is it true that this is a list? Yes,
(((HOW) ARE) ((YOU) (DOING SO)) FAR) because it is a collection of S~expressions,

enclosed by parentheses.

How many S-expressions are in the list 3
(((HOW) ARE) ((YOU) (DOING SO)) FAR) ((HOW) ARE), ((YOU) (DOING SO)), and FAR.

and what are they?

Is it true that this is a list? Yes,

() because it is a collection of zero S-expressions
enclosed by parentheses.

This special S-expression is called the null list.

1.18)

1.19)

1.20)

1.21)

1.22)

1.23)

1.24)

1.25)

1.26)

1.27)

1.28)

1.29)

1.30)

1.31)

Is it true that this is a list? Yes,

€¢)6)90) 0)) because it is a collection of S-expressions
i enclosed by parentheses.

What is the CAR of L, where L is the argument A >
(A BC) because A is the first atom of this non-null list.

What is the CAR of L, where L is the argument (A BC)
((A BC) XY 2) because (A B C) is the first S-expression of

this non-null list.

What is the CAR of L, where L is the argument No answer,
HOTDOG since you cannot ask for the CAR of an atom.

What is the CAR of L, where L is the argument No answer,

¢) since you cannot ask for the CAR of the null list.

PRINCIPLE No. 1

CAR is only defined for

non-null lists.

What is the CAR of L, where L is the argument ((HOTDOGS)) --Read as: "The list of the list
((CHOTDOGS)) (AND) (PICKLE) RELISH) composed of the atom HOTDOGS ean

because ((HOTDOGS)) is the first S-expression
of this non-null list.

What is (CAR L), where L is the argument (CHOTDOGS))
(CC(HOTDOGS)) (AND) (PICKLE) RELISH)

What is (CAR (CAR L)), where L is the argument (HOTDOGS)

((CHOTDOGS)) (AND))

What is the CDR of -L, where L is the argument (BC),

(A BC) because (B C) is the list L, without (CAR L).

Note: "CDR" is pronounced "couder".

What is the CDR of L, where L is the argument (YZ).
((A BC) XY Z)

What is (CDR L), where L is the argument (TR),

((X) T R) since (CDR L) is just another way to ask for
"The CDR of the list L".

What is (CDR A), where A is the argument No answer,
HOTDOGS ’ since you cannot ask for the CDR of an atom.

What is (CDR L), where L is the argument No answer,
since you cannot ask for the CDR of the null list.

PRINCIPLE No. 2

CDR is only defined for non-null lists;

the CDR of any list is always another

list.

What is (CAR (CDR L)), where L is the argument (XY),
((B) & ¥)C(C))) because ((X Y)((C))) is (CDR L), and (X Y) is

the CAR of (CDR L).

1.32)

1.33)

1.34)

1.35)

1.36)

1.37)

1.38)

1.39)

1.40)

1.41)

1.42)

1.43)

1.44)

1.45)

What is (CDR (CDR L)), where L is the argument €((C))),

((B) (KX Y)C(C))) because ((X Y)((C))) is (CDR L), and (((C))) is
the CDR of (CDR L).

What is (CDR (CAR L)), where L is the argument No answer,
(A (B (C)) D) since (CAR L) is an atom, and CDR wiil not take

_ an atom for an argument; see PRINCIPLE No. 2.

What does (CAR L) take as an argument? (CAR L) takes any non-null list as its argument, L.

What does (CDR L) take as an argument? (CDR L) takes any non-null list as its argument, L.

What is the CONS of the atom A and the list L, where (PEANUT BUTTER AND JELLY)
A is the argument PEANUT, and because CONS sticks an atom onto the front of a
L is the argument (BUTTER AND JELLY) list.

This can alternatively be asked (CONS A L),
Read: "CONS the atom A onto the list L."

What is the CONS of S and L, where ((MAYONNAISE AND) PEANUT BUTTER AND JELLY),
S is (MAYONNAISE AND), and because CONS sticks any S-expression onto the
L is (PEANUT BUTTER AND JELLY) front of the list.

What is (CONS S L), where (((HELP) THIS) IS VERY ((HARD) TO LEARN)).
S is ((HELP) THIS), and
L is (IS VERY ((HARD) TO LEARN))

What does CONS take as its arguments? (CONS S L) takes two arguments:
the first one, S, is any S-expression;

the second one, L, is any list.

What is (CONS S L), where ((A B (C))),
S is (AB (C)), and since () is a list.
Lis ()

What is (CONS S L), where (A)
S is A, and

L is ()

What is (CONS S L), where tro answer,
S is (A B (C)), and since the second argument, L, must be a list.

L is B
==

What is (CONS S L), where tio answer,
S is A, and why?
L is B

PRINCIPLE No. 3

The second argument of (CONS S L) must

be a list, and the result must also be

a list.

What is (CONS S (CAR L)), where (A B),
S is A, and why?
L is ((B) C ¢C)

What is (CONS S (CDR L)), where (ACD),
S is A, and why?
L is €(B) C D)-

Tha actual LISP systems (CONS S A) where A is any atom is well defined. Our 4htention is to prevent

you from thinking about CONSing something onto an atom.

1.46)

1.47)

1.48)

1.49)

1.50)

1.51)

1.52)

1.53)

1.54)

1.55)

1.56)

1.57)

1.58)

1.59)

1.60)

1.61)

Is it true that the list, L, is the null list, where Yes,

Lis ()? because it is the list composed of zero S-expressions.
This question is alternatively read as:

(NULL L).

Is (NULL L) true, or false, where False,
L is the argument (A B C) because it is a non-null list.

Is (NULL L) true, or false, where tyo answer,
Lis A because you cannot ask (NULL L) of an atom.

PRINCIPLE No. 4

(NULL _L) is only defined

for lists.

Is it true, or false, that S is an atom, where True,
S is the argument HARRY because HARRY is a string of characters beginning

with a letter.

Is (ATOM S) true, or false, where True,
S is HARRY since (ATOM S) is just another way to ask: "Is

it true, or false, that S is an atom?"

Is (ATOM S) true, or false, where Faise,
S is (HARRY HAD A HEAP OF APPLES) since the argument, S, is a list.

tha actual LISP systems (NULL S) where S is any S-expression is well defined. The intention is to prevent

you from thinking about (NULL A) where A is an aton.

How many arguments does ATOM take? ATOM takes one argument, which ts any S-expression.
What are they?

Is (ATOM (CAR L)) true, or false, where True,
L is (HARRY HAD A HEAP OF APPLES) because (CAR L) is HARRY, and HARRY is an atom.

Is (ATOM (CDR L)) true or false, where False,
L is (HARRY HAD A HEAP OF APPLES) see PRINCIPLE No. 2.

Is (ATOM (CAR (CDR L))) true, or false, where true,
L is (SWING LOW SWEET CHERRY) because (CDR L) is (LOW SWEET CHERRY), and

(CAR (CDR L)) is LOW, which is an atom,

‘Is (ATOM (CAR (CDR L))) true, or false, where False,
L is (SWING (LOW SWEET) CHERRY) because (CDR L) is ((LOW SWEET) CHERRY), and

(CAR (CDR L)) is (LOW SWEET), which is a list.

True or false: Al and A2 are the same atom, where True,
Al is HARRY, and because both Al and A2 are HARRY.
A2 is HARRY

Is (EQ Al A2) true, or false, where True,
Al is the argument HARRY, and because (EQ Al A2) is just another way to ask:
A2 is the argument HARRY “Are Al and A2 the same atom?"

Is (EQ Al A2) true, or false, where False,
Al is MARGARINE, and since the arguments Al and A2 are different atoms.
A2 is BUTTER

How many arguments does EQ take, and what are they? EQ takes two arguments, both of which must be atoms.

Is (EQ AL) true, or false, where No answer,
A is STRAWBERRY, and since néither argument of EQ can be a list.
L is (STRAWBERRY)

PRINCIPLE No. 5

(EQ Al A2) takes two arguments.

Both of the arguments must be

atoms, which begin with letters.

1.62) Is (EQ (CAR L) A) true, or false, where True,
L is (MARY HAD A LITTLE LAMB CHOP), and because (CAR L) is the atom MARY, and the
A is MARY argument A is also the atom MARY.

1.63) Is (EQ (CDR L) A) true, or false, where No answer,
L is (SOURED MILK), and See PRINCIPLES Nos. 2 and 5.
A is MILK

1.64) Is (EQ (CAR L)(CAR (CDR L))) true, or false, where True,
L is (BEANS BEANS ARE GOOD FOR YOUR HEART) This compares the first and second atoms in the

list.

Now go make yourself a PEANUT BUTTER AND JELLY SANDWICH.

This space reserved for

JELLY STAINS!

2.1)

2.2)

2.3)

2.4)

2.5)

2.6)

2.7)

2.8)

2.9)

2.10)

2.11)

2.12)

2.13)

CHAPTER 2: DO IT, DO IT AGAIN, AND AGAIN, AND AGAIN. . .

True, or false: (ISLAT L), where True,

L is (JACK SPRAT COULD EAT NO CHICKEN FAT) because each S-expression in L is an atom.

True, or false: (ISLAT L), where False,

L is ((JACK) SPRAT COULD EAT NO CHICKEN FAT) since (CAR L) is a list.

True, or false: (ISLAT L), where False,
L is (JACK (SPRAT COULD) EAT NO CHICKEN FAT) since one of the S-expressions in L is a list.

True, or false: (ISLAT L), where True, é
Lis () because () contains no lists, and because it

does not contain any lists, it must be a LAT.

True, or false: a LAT is a list of atoms. True. .
Note: Every LAT is a list, but not every list
is a LAT.

Write the function (ISLAT L), using some, but not We did not expect you to know this, but we wanted
necessarily all, of the following functions: you to realize that you are still missing some

CAR, CDR, CONS, NULL, ATOM, and EQ. necessary relationships. Go on to the next

question. Good luck.

This is the function (ISLAT L), defined with the True.
help of the functions, The function (ISLAT L), where L is

NULL, CAR, CDR, and ATOM: (BACON AND EGGS)

has the value T --true-- because L is a LAT.

(ISLAT (LAMBDA (L)
(COND
((NULL L) T)
((ATOM (CAR L))(ISLAT (CDR L)))
(T F)

> »))

What is the value of (ISLAT L), where

L is the argument (BACON AND EGGS)?

How do you arrive at the answer T for the We don't expect you to know this one, either.

function (ISLAT L)? ‘The answer is arrived at through asking the

questions of (ISLAT L). HINT: Write down the
function (ISLAT L) and refer to it for the

next group of questions.

What is the first question asked by (ISLAT L)? (NULL L)

Note: "(COND" is only a necessary stem that
you will have to learn to live with.
Similarly, "(LAMBDA" is a necessary part of the
scenery, but for our purposes, it is as useful
as a screen door on a submarine sandwich.

What is the meaning of the line (NULL L) asks if the argument L is the null list.
((NULL L) T), If it is, then the value of the function is T.

where If it is not, then we ask the next question. In
L is (BACON AND EGGS) this case, L is not the null list, so we ask the

next question.

What is the next question? (ATOM (CAR L))

What is the meaning of the line (ATOM (CAR L)) asks if the first S-expression of
((ATOM (CAR L))(ISLAT (CDR L))), the list, L, is an atom. If (CAR L) is an atom,

where then we want to know if the rest of L is also
L is (BACON AND EGGS) composed only of atoms. If (CAR L) is not an

atom, then we ask the next question. In this

case, (CAR L) is an atom, so the value of the

function is (ISLAT (CDR L)).

What is the meaning of (ISLAT (CDR L)) finds out if the rest of the
(ISLAT (CDR L))? list, L, is composed only of atoms, by referring

us back to the original function, but now with

a new argument.

2.14)

2.15)

2.16)

2.17)

2.18)

2.19)

2.20)

2.21)

2.22)

2.23)

2.24)

2.25)

2.26)

2.27)

2.28)

Now, what is the argument, L, for ISLAT? Now the argument, L, is (CDR L), which is
(AND EGGS).

What is the next question? (NULL L).

What is the meaning of the line (NULL L) asks if the argument, L, is the null list.
((NULL L) T) If it is, then the value of the function is T.

where If it is not, then we ask the next question.
L is now (AND EGGS) In this case, L is not the null list, so we ask

the next question.

What is the next question that must be asked? (ATOM (CAR L))
REE Pe Ee pe ie OE

What is the meaning of the line (ATOM (CAR L)) asks if (CAR L) is an atom.
((ATOM (CAR L))(ISLAT (CDR L))) If it is an atom, then the value of the function is

where (ISLAT (CDR L)).
L is (AND EGGS)? If it is not an atom, then we ask the next

question. In this case, (CAR L) is an atom, so
we want to find out if the rest of the. list, L,

is composed only of atoms.

What is the meaning of (ISLAT (CDR L)) finds out if the rest of L is
(ISLAT (CDR L)) composed only of atoms, by referring us back

again to the original function, (ISLAT L), but
this time, with the argument (CDR L), which is

(EGGS) .

What is the next question? (NULL L)

What is the meaning of the line (NULL L) asks if the argument, L, is the null list.

((NULL L) T) If it is, the value of the function is T -~ true.
where If it is not, then move to the next question. In

L is now (EGGS) this case, L is not null, so we ask the next
question.

What is the next question that must be asked? (ATOM (CAR L))

What is the meaning of the line (ATOM (CAR L)) asks if (CAR L) is an atom.
((ATOM (CAR L))(ISLAT (CDR L))) If it is, then the value of the function is

where (ISLAT (CDR L)).
L is now (EGGS) If (CAR L) is not an atom, then ask the next

question. In this case, (CAR L) is an atom, so
once again we look at (ISLAT (CDR L)).

What is the meaning of (ISLAT (CDR L))? (ISLAT (CDR L)) finds out if the rest of the list,
L, is composed only of atoms, by referring us
back to the original function, (ISLAT L), with
L replaced by (CDR L).

Now, what is the argument for ISLAT? ()

What is the meaning of the line (NULL L) asks if the argument, L, is the null list.

((NULL L) T) If it is, then the value of the function is T.
where If it is not the null list, then we ask the next

L is now () question. In this case, () is the null list.
Therefore, the value of the function (ISLAT L),
where L is (BACON AND EGGS), is T, or true.

Do you remember the problem about Probably not.
(ISLAT L)? The function (ISLAT L) has a value of T if the

list, L, is a list of atoms, where L is

(BACON AND EGGS).

Can you describe what the function ISLAT does, Here are our words:
in your own words? "ISLAT looks at each S-expression, in turn, and

asks if each S-expression is an atom, until it
runs out of S-expressions. When it runs out
without encountering a list, the function's value
is T. As soon as it finds a list, the function
value is F --false. To see how we could arrive
at a value of "faise", consider the next few
questions."

2.29)

2.30)

2.31)

2.32)

2.33)

2.34)

2.35)

2.36)

2.37)

2.38)

2.39)

2.40)

2.41)

2.42)

2.43)

This is the function (ISLAT L), again: False,
: since the list L contains an S-expression that

(ISLAT (LAMBDA (L) ts a list.
(COND
((NULL L) T)
((ATOM (CAR L)) (ISLAT (CDR L)))
(T F)

>)»

What is the value of (ISLAT L), where
L is now (BACON (AND EGGS))?

What is the first question to be asked? (NULL L)

What is the meaning of the line (NULL L) asks if L is the null list.
(QNULL L) T) If it is, the value of the function is T. If

where L is not null, then move to the next question.
L is (BACON (AND EGGS)) In this case, it is not null, so we ask the

next question.

What is the next question: {ATOM (CAR L))

What is the meaning of the line (ATOM (CAR L)) asks if (CAR L) is an atom.

((ATOM (CAR L)) (ISLAT (CDR L))) If it is, the value of the function is
where : (ISLAT (CDR L)).

L is (BACON (AND EGGS)) Tf it is not, we ask the next question. In

this case, (CAR L) is an atom, so we want to
check if the rest of the list, L, is composed

only of atoms.

What is the meaning of CISLAT (CDR L)) checks to see if the rest of. the
(ISLAT (CDR L))? list, L, is composed only of atoms, by referring

us back to (ISLAT L) with L replaced by (CDR L).

What is the meaning of the line. (NULL L) asks if L is the null list.
CQNULL L) T) If it is null, the value of the function is T.

where If it is not null, we ask the next question.
L is now ((AND EGGS)) In this case, L is not null, so move to the

next question.

What is the next question? (ATOM (CAR L))

What is the meaning of the line (ATOM (CAR L)) asks if (CAR L) is an atom.
((ATOM (CAR L))CISLAT (CDR L))) If it is, then the value of the function is

where (ISLAT (CDR L)).
L is now ((AND EGGS)) If it is not, then we move to the next question.

In this case, (CAR L) is not an atom, so we ask

the next question.

What is the next question? T

What is the meaning of the question, T?. T asks if T is true.

Is T true? : Yes,
because the question T is always true!

T T

Why is T the last question? Because we do not need to ask any more questions.

What is the meaning of the line T asks if T is true.

(T F) If T is true --as it always is-- then the value
of the function is F -- false.

2.44)

2.45)

2.46)

2.47)

2.48)

2.49)

2.50)

2.51)

2.52)

2.53)

What is the meaning of the line

> »
These are just the closing parentheses which match
"(COND", "(LAMBDA", and "(ISLAT" at the beginning
of the description of the function. We call these
"aggravation parentheses", and they are always put
at the end of a function.

Can you describe how we arrived at the value F for
(ISLAT L)

where
L is (BACON (AND EGGS))?

Here is one way to say it:
“(ISLAT L) looks at each S-expression in its
argument, to see if it is an atom. If it runs

out of S-expressions before it finds a list, the
value of (ISLAT L) is T. If it finds a list, as
it did in the example (BACON (AND EGGS)), the

value of (ISLAT L) is F,"

Is it true, or false, that A is a member of LAT,
where ;

A is the argument TEA, and
LAT is the argument (COFFEE TEA OR MILK)

True,

because one of the atoms of the LAT
(COFFEE TEA OR MILK)

is the same as the atom A, TEA.

Is (MEMBER A LAT) true, or false, where
A is POACHED, and

LAT is (FRIED EGGS AND SCRAMBLED. EGGS)

False,
since A is not one of the atoms of the LAT.

This is the function (MEMBER A LAT):

(MEMBER (LAMBDA (A LAT)
(COND
((NULL LAT) F)
((EQ (CAR LAT) A) T)
(TZ (MEMBER A (CDR LAT)))

>»

What is the value of (MEMBER A LAT), where
A is MEAT, and
LAT is (MASHED POTATOES AND MEAT GRAVY)

How do you arrive at the value T for the above
function?

What is the first question asked by
(MEMBER A LAT)

True;

because the atom MEAT is one of the atoms of

the LAT, (MASHED POTATOES AND MEAT GRAVY).

The value is arrived at by asking the questions

about (MEMBER A LAT). HINT: Write down the
function (MEMBER A LAT), and refer to it while
you work on the next group of questions.

(NULL LAT)

Note: This is also the first question asked by

(ISLAT L).

COMMANDMENT No. 1

Thou shalt always ask NULL as the first

question in describing any function.

What is the meaning of the line
((NULL LAT) F)

where
LAT is (MASHED POTATOES AND MEAT GRAVY)

(NULL LAT) asks if the LAT is the null list.

If it is, then the value of the function is F,

false, since the atom MEAT was not found in the
LAT. If it is not, then we ask the next question.
In this case, it is not null, so we ask the next
question.

What is the next question? (EQ (CAR LAT) A)

What is the meaning of the line

((EQ (CAR LAT) A) T)
where

A is MEAT, and
LAT is (MASHED POTATOES AND MEAT GRAVY)

(EQ (CAR LAT) A) asks if the CAR of LAT is the

same as the atom A.
If it is, then the value of the function is T.
If it is not, then we ask the next question. In
this case, it is not, so we ask the next question.

2.54)

2.55)

2.56)

2.57)

2.58)

2.59)

2.60)

2.61)

2.62)

2.63)

2.64)

2.65)

2.66)

2.67)

2.68)

2.69)

2.70)

2.71)

2.72)

2.73)

2.74)

2.75)

2.76)

What is the next question? tr

Is T really a question? Yes,
T is a question whose answer is always true.

Give an example of a question to which the answer Here's ours:
is contained in the question. "What color is an orange?"

What is the meaning of the line Now that we know that the LAT is not null, and
(T (MEMBER A (CDR LAT))) we know that the CAR of LAT is not the same

atom as A, we want to find out if the atom A is

somewhere in the rest of the LAT. The function
does this by referring us back to the original
function, with the argument LAT replaced by

(CDR LAT).

What are the arguments for MEMBER now? A is MEAT, and
LAT is now (CDR LAT) -- (POTATOES AND MEAT GRAVY).

What is the next question? (NULL LAT).
Remember COMMANDMENT No. 17

Is (NULL LAT) true, or false, where F -- false.

LAT is (POTATOES AND MEAT GRAVY)

What do we do now? Ask the next question.

What is the next question? (EQ (CAR LAT) A).

What is (EQ (CAR LAT) A), where F -- false.
A is MEAT, and
LAT is (POTATOES AND MEAT GRAVY)

What do we do now? Ask the next question.

What is the next question? T

What is T? T -- true.

What is the meaning of the line (MEMBER A (CDR LAT)) finds out if A is a member
(T (MEMBER A (CDR LAT))) ? of the CDR of the LAT, by referring us back to

the original function.

What are the arguments of MEMBER now? A is MEAT, and

LAT is (AND MEAT GRAVY).

What is the next question? (NULL LAT)

What do we do now? Ask the next question,
since (NULL LAT) is false.

What is the next question? 4 (EQ (CAR LAT) A)

What do we do now? Ask the next question,

What is the next question? T

What is the value of the line (MEMBER A (CDR LAT))

What do we do now? Recurse -- refer to the origina] function, with
new arguments.

What are the new arguments? A is MEAT, and
LAT is (MEAT GRAVY)

10

2.77)

2.78)

2.79)

2.80)

2.81)

2.82)

2.83)

2.84)

2.85)

2.86)

2.87)

2.88)

2.89)

2.90)

2.91)

What is the next question?

What do we do now?

What is the next question?

What is the value of the line

((EQ (CAR LAT) A) T)

What is the value of the function
(MEMBER A LAT)

where

A is MEAT, and
LAT is (MEAT GRAVY)

What is the value of the function

(MEMBER A LAT)

where

A is MEAT, and
LAT is (AND MEAT GRAVY)

What is the value of the function

(MEMBER A LAT)-
where

A is MEAT, and

LAT is (POTATOES AND MEAT GRAVY)

(NULL LAT)

Ask the next question,
since (NULL LAT) is false.

(EQ (CAR LAT) A)

T,
because (CAR LAT), which is MEAT, and A, which
is MEAT, are the same atom.

T,
because we have now found that MEAT is a member
of (MEAT GRAVY).

T,
because MEAT is also a member of the LAT

(AND MEAT GRAVY).

4

T,

because MEAT is also a member of the LAT

(POTATOES AND MEAT GRAVY).

What is the value of the function

(MEMBER A LAT)

where

A is MEAT, and
LAT is (MASHED POTATOES AND MEAT GRAVY)

Just to make sure you have it right, let's
run through it again quickly:
What is the value of

(MEMBER (LAMBDA (A LAT)
(COND
(QNULL LAT) F)

((EQ (CAR LAT) A) T)
(7 (MEMBER A (CDR LAT)))

») »

where

A is MEAT, and

LAT is (MASHED POTATOES AND MEAT GRAVY)

T,

because MEAT is also a member of the LAT
(MASHED POTATOES AND MEAT GRAVY).

Of course, you noticed that this is our original

LAT.

T.

HINT: Write down the function MEMBER and its
arguments and refer to them as you go through
the next bunch of questions.

(NULL LAT) No,

move to the next line.

(EQ (CAR LAT) A) No,

move to the next line.

T Yes,
recurse with A and (CDR LAT), where

A is MEAT and
(CDR LAT) is (POTATOES AND MEAT GRAVY).

(NULL LAT) No,
move to the next line.

(EQ (CAR LAT) A) No,

move to the next line.

| Yes,

recurse with A and (CDR LAT), where
A is MEAT, and
(CDR LAT) is (AND MEAT GRAVY)

11

2.92)

2.93)

2.94)

2.95)

2.96)

2.97)

2.98)

2.99)

2.100)

2.101)

2.102)

2.103)

2.104)

2.105)

2.106)

2.107)

2.108)

2.109)

2.110)

(NULL LAT) No,
move to the next line.

(EQ (CAR LAT) A) No,
move to the next line.

T Yes,

recurse with A and (CDR LAT), where
A is MEAT, and i
(CDR LAT) is (MEAT GRAVY)

(NULL LAT) No,
move to the next line.

4

(EQ (CAR LAT) A) Yes,
the value of this function is T.

What is the value of (MEMBER A LAT), where T

A is MEAT, and

LAT is (MEAT GRAVY)

What is the value of (MEMBER A LAT), where T
A is MEAT, and

LAT is (AND MEAT GRAVY)

What is the value of (MEMBER A LAT), where T

A is MEAT, and
LAT is (POTATOES AND MEAT GRAVY)

What is the value of (MEMBER A LAT), where T
A is MEAT, and (T sometimes appears as *T*).
LAT is (MASHED POTATOES AND MEAT GRAVY)

What is the value of (MEMBER A LAT), where F

A is LIVER, and (F sometimes appears as NIL)
LAT is (BAGELS AND LOX)

(NULL LAT) No,
move to the next line.

(EQ (CAR LAT) A) No,
move to the next line.

T Yes,
recurse with A and (CDR LAT), where

A is LIVER, and

(CDR LAT) is (AND LOX)

(NULL LAT) No,
move to the next line.

(EQ (CAR LAT) A) No,
7 move to the next line.

T Yes,
recurse with A and (CDR LAT), where

A is LIVER, and

(CDR LAT) is (LOX)

(NULL LAT) No,
move to the next line.

(EQ (CAR LAT) A) No,
move to the next line.

T Yes,

recurse with A and (CDR LAT), where
A is LIVER, and
(CDR LAT) is ()

2.111)

2.112)

2.113)

2.114)

2.115)

(NULL LAT) Yes.

What is the value of (MEMBER A LAT), where F
A is LIVER, and

LAT is ()

What is the value of (MEMBER A LAT), where F
A is LIVER, and

LAT is (LOX)

What is the value of (MEMBER A LAT), where F
A is LIVER, and
LAT is (AND LOX)

What is the value of (MEMBER A LAT), where F
A is LIVER, and
LAT is (BAGELS AND LOX)

13

3.1)

3.2)

3.3)

3.4)

3.5)

3.6)

3.7)

3.8)

3.9)

3.16)

3.11)

3.12)

3.13)

3.14)

CHAPTER 3: THE MIGHTY CONS

What is (REMBER A LAT), where (LAMB CHOPS AND JELLY)

A is MINT, and REMBER stands for REMove the memBER.
LAT is (LAMB CHOPS AND MINT JELLY)

(REMBER A LAT), where (LAMB CHOPS AND FLAVORED MINT JELLY)
A is MINT, and
LAT is (LAMB CHOPS AND MINT FLAVORED MINT JELLY)

(REMBER A LAT), where (BACON LETTUCE AND TOMATO)
A is TOAST, and
LAT is (BACON LETTUCE AND TOMATO)

(REMBER A LAT), where (COFFEE TEA CUP AND HICK CUP)
A is CUP, and

LAT is (COFFEE CUP TEA CUP AND HICK CUP)

What does (REMBER A LAT) do? It takes an atom and a LAT as its arguments,
and makes a new LAT with the first occurrence
of the atom in the old LAT removed.

What steps will we use to do this? First, we will compare A with (CAR LAT). We

will want to build a list, from left to right.

How do we ask if A is the same as (CAR LAT)? (EQ (CAR LAT) A)

What would be the value of (REMBER A LAT) if (CDR LAT)
A is the same as (CAR LAT)?

What do we do if A is not the same as (CAR LAT)? We will want to keep (CAR LAT), but also find
out if A is somewhere in the rest of the LAT.

How do we find out if A is somewhere in the rest (REMBER A (CDR LAT))

of LAT?

Let us now use the ideas developed so far, to Obviously, we have forgotten COMMANDMENT No. 1!
write the function REMBER: Now, rewrite (REMBER A LAT).

(REMBER (LAMBDA (A LAT)
(COND
((EQ (CAR LAT) A) (CDR LAT))
(tT (REMBER A (CDR LAT)))

» »))

What is missing from here?

Now, we think that this is the function REMBER: (LETTUCE AND TOMATO)
HINT: Write down the function REMBER and its

(REMBER (LAMBDA (A LAT) arguments, and refer to them as you go through

(COND the next sequence of questions.

((NULL LAT) ())
((EQ (CAR LAT) A)(CDR LAT)) '
(T (REMBER A (CDR LAT)))

») »))

What is the value of (REMBER A LAT), where
A is BACON, and

LAT is (BACON LETTUCE AND TOMATO)

Now, let's see if this function works. (NULL LAT)
What is the first question?

What do we do now? Move to the next line and ask the next question.

3.15)

3.16)

3.17)

3.18)

3.19)

3.20)

3.21)

3.22)

3.23)

3.24)

3.25)

3.26)

3.27)

3.28)

3.29)

3.30)

3.31)

3.32)

3.33)

(EQ (CAR LAT) A) Yes,
so the value of the function is (CDR LAT).
In this case, it is the list

(LETTUCE AND TOMATO)

Is this the correct value of the function? Yes,
because the above list is the original list
without the atom BACON.

But did we really use a good example? Who knows?
But the proof of the pudding is in the eating,
so let's try another example.

What does (REMBER A LAT) do? It takes an atom and a LAT as its arguments, and
makes a new LAT with the first occurrence of the
atom in the old LAT removed.

What steps will we use to do this? First, we will compare each atom of the LAT with

the atom A.

Second, we want to build a list from left to right.

What is the value of (REMBER A LAT), where (BACON LETTUCE TOMATO)
A is AND, and ’

LAT is (BACON LETTUCE AND TOMATO)

Let us see if this function works. (NULL LAT)
What is the first question asked by REMBER?

What do we do now? Move to the next line, and ask the next question.

(EQ (CAR LAT) A) No,
so move to the next line.

What is the meaning of the line T asks if T is true -- as it always is -- and
(T (REMBER A (CDR LAT))) the rest of the line says to recurse with A and

(CDR LAT), where
A is AND, and

(CDR LAT) is (LETTUCE AND TOMATO)

(NULL LAT) No,
so move to the next line.

(EQ (CAR LAT) A) No,
so move to the next line.

What is the meaning of the line Recurse, where
(tT (REMBER A (CDR LAT))) A is AND, and

(CDR LAT) is (AND TOMATO)

(NULL LAT) No,
so move to the next line, and ask the next question.

(EQ (CAR LAT) A) Yes,

What is the value of the function (CDR LAT) -- (TOMATO).
(REMBER A LAT)

Is this correct? No,
since (TOMATO) is not the list

(BACON LETTUCE AND TOMATO)

with only A --AND-~ removed.

What did we do wrong? We dropped AND, but we also lost all the atoms
preceeding AND.

How can we keep from losing the atoms We use CONS "The Magnificent".
BACON and LETTUCE? Remember CONS, from Chapter One?

15

COMMANDMENT No. 2

Thou shalt use CONS to build lists.

3.34) Let's just see what happens when we use CONS:

(REMBER (LAMBDA (A LAT)
(COND
((NULL LAT) ())
((EQ (CAR LAT) A)(CDR LAT))
(T (CONS (CAR LAT) (REMBER A (CDR LAT))))

»)

Now, what is the value of (REMBER A LAT), where
A is AND, and

LAT is (BACON LETTUCE AND TOMATO)

3.35) What is the first question?

(BACON LETTUCE TOMATO)

Make a copy of this function with CONS and the
arguments A and LAT, so you can refer to it for
the following questions.

(NULL LAT)

3.36) What do we do now?

3.37) (EQ (CAR LAT) A)

3.38) What is the meaning of the line
(T (CONS (CAR LAT) (REMBER A (CDR LAT))))

where

A is AND, and

LAT is (BACON LETTUCE AND TOMATO)

Move to the next line of the function and ask the

next question. :

No,

so move to the next line.

CONS (CAR LAT) --BACON-~ onto the value of
(REMBER A (CDR LAT)). But since we don't know
the value of (REMBER A (CDR LAT)) yet, we will

have to find this value before we can CONS (CAR LAT)

onto it.

16

Draw a picture of "CONS The Magnificent" on this page.

3.39)

3.40)

3.41)

3.42)

3.43)

3.44)

3.45)

3.46)

3.47)

3.48)

3.49)

3.50)

3.51)

3.52)

3.53)

What is the meaning of (REMBER A (CDR LAT)) This refers us back to the original function,
with LAT replaced by (CDR LAT) -- (LETTUCE AND
TOMATO) .

(NULL LAT) No,
so move to the next line.

(£Q (CAR LAT) A) No,
so move to the next line.

What is the meaning of the line CONS (CAR LAT) --LETTUCE-- onto the value of

(T (CONS (CAR LAT) (REMBER A (CDR LAT)))) (REMBER A (CDR LAT)).
But since we don't know that value, we will have
to find that value before we can CONS (CAR LAT)

onto our list.

What is the meaning of (REMBER A (CDR LAT))? This refers us back to the original function with

LAT replaced by (CDR LAT) -- (AND TOMATO).

(NULL LAT) No,
so move to the next line.

(EQ (CAR LAT) A) Yes.

What is the value of the line (CDR LAT) -- (TOMATO).
(CEQ (CAR LAT) A) (CDR LAT))

Are we finished? Certainly not!
So far we know what (REMBER A LAT) is when LAT
is (AND TOMATO), but we don't yet know what it
is when LAT is (LETTUCE AND TOMATO) or (BACON

LETTUCE AND TOMATO).

We now have a value for (REMBER A (CDR LAT)), Recall that we wanted to CONS LETTUCE onto the
where value of (REMBER A (CDR LAT)), where A was AND,

A is AND, and and (CDR LAT) was (AND TOMATO). Now that we have

(CDR LAT) is (AND TOMATO) this value, which is (TOMATO), we can CONS
This value is (TOMATO). This is not the final LETTUCE onto this value. Reread the last six
value, so what must we do? steps.

What is the result when we CONS LETTUCE onto (LETTUCE TOMATO)

(TOMATO)

What does (LETTUCE TOMATO) represent? It represents the value of (REMBER A (CDR LAT)).
when

A was AND, and
(CDR LAT) was (AND TOMATO)

Are we finished yet? Not quite.
So far we know what (REMBER A LAT) is when

LAT is (LETTUCE AND TOMATO),

but we don't yet know what it is when
LAT is (BACON LETTUCE AND TOMATO)

We now have a value for (REMBER A (CDR LAT)) Recall that, at one time, we wanted to CONS
when BACON onto the value of (REMBER A (CDR LAT)),

A was AND, and when
(CDR LAT) was (LETTUCE AND TOMATO). A was AND, and

This value was (LETTUCE TOMATO). This is not (CDR LAT) was (LETTUCE AND TOMATO)
the final value, so what must we do again? Now that we have this value, which is

(LETTUCE TOMATO) ,
we can CONS BACON onto this value.

7

What is the result when we CONS BACON onto (BACON LETTUCE TOMATO)

(LETTUCE TOMATO)

18

3.54)

3.55)

3.56)

3.57)

3.58)

3.59)

3.60)

3.61)

3.62)

3.63)

3.64)

3.65)

3.66)

3.67)

3.68)

3.69)

What does (BACON LETTUCE TOMATO) represent? It represents the value of
(CONS (CAR LAT) (REMBER A (CDR LAT))),

when

A was AND, and
(REMBER A (CDR LAT)) was (LETTUCE TOMATO)

Are we finished yet? Yes.

Can you put in your own words how we arrived In our words:
at the final value "REMBER checked each atom of the LAT, one at a

(BACON LETTUCE TOMATO) time, to see if it was the same as the atom AND.
If the CAR was not the same as the atom, we

saved it to be CONS'd to the final value later.
When REMBER found the atom AND, it dropped it,
and CONS'd the previous atoms onto the rest of
the LAT, in reverse order."

What is the value of the function (BACON LETTUCE TOMATO)

HINT: Write down the function REMBER and its
(REMBER (LAMBDA (A LAT) arguments and refer to them as you go through

(COND the next sequence of questions.
C(QNULL LAT) ())

€(EQ (CAR LAT) A) (CDR LAT))
(T (CONS (CAR LAT) (REMBER A (CDR LAT))))

>»)

where
A is AND, and

LAT is (BACON LETTUCE AND TOMATO)

(NULL LAT) No.

(EQ (CAR LAT) A) No.

Tt T ’
so the value is

(CONS (CAR LAT) (REMBER A (CDR LAT)))

What is the meaning of This says to refer back to the original function
‘(CONS (CAR LAT) (REMBER A (CDR LAT))) REMBER, but with the argument LAT replaced by

(CDR LAT), and that after we arrived at a value
for (REMBER A (CDR LAT)) we will CONS (CAR LAT)

--BACON-~ onto it.

(NULL LAT) No. =

(EQ (CAR LAT) A) No.

T T >
so the value is

(CONS (CAR LAT) (REMBER A (CDR LAT)))

What is the meaning of This says we recurse back to the original function
(CONS (CAR LAT) (REMBER A (CDR LAT))) REMBER, with the argument LAT replaced by (CDR LAT),

and that after we arrive at a value for

(REMBER A (CDR LAT)), we will CONS (CAR LAT)
--LETTUCE-- onto it.

(NULL LAT) No.

(EQ (CAR LAT) A) Yes.

What is the value of the line (CDR LAT) -- (TOMATO)

Now what? CONS (CAR LAT) --LETTUCE-- onto (TOMATO) --see

answer #3.60 forming (LETTUCE TOMATO).

3.70)

3.71)

3.72)

3.73)

3.74)

3.75)

3.76)

3.77)

3.78)

3.79)

3.80)

3.81)

3.82)

3.83)

3.84)

3.85)

Now what? CONS (CAR LAT) --BACON-- onto (LETTUCE TOMATO) --
see answer #3.64 forming (BACON LETTUCE TOMATO).

Now ai we have completed REMBER, try this (REMBER A LAT) is (SOY. AND TOMATO SAUCE)
example:

(REMBER A LAT), where
A is SAUCE, and

LAT is (SOY SAUCE AND TOMATO SAUCE)
—_—

What is (FIRSTS L), where (APPLE PLUM GRAPE BEAN)
L is

((APPLE PEACH PUMPKIN) (PLUM PEAR CHERRY)

(GRAPE RAISIN PEA) (BEAN CARROT EGGPLANT))
eee

What is (FIRSTS L), where (A C EB)
L is ((A B)(C D)(E F))
se

What is (FIRSTS L), where ¢)
Lis ()
"="

What is (FIRSTS L), where (FIVE FOUR ELEVEN)
L is ((FIVE PLUMS) (FOUR) (ELEVEN GREEN ORANGES))

Tn your own words, what does (FIRSTS L) do? We tried the following:
"FIRSTS takes one argument, a list, which must
either be a null list, or contain one or more

non-null lists. It builds another list composed
of the first S-expression of each internal list."

SS i eee

See if you can write the functions FIRSTS. Believe it or not, you can probably write the
Remember the COMMANDMENTS! following:

(FIRSTS (LAMBDA (L)
(COND
((NULL L))
(T (CONS (FIRSTS (CDR L))))

>»)

Why (FIRSTS (LAMBDA (L)? Because we always state the function, then
"(LAMBDA", then the arguments of the function.

Why (COND ? Because it is a necessary part of the function,
and must always be used.

Why ((NULL L) 7? COMMANDMENT No. 1.

Why (T ? Because the last line always begins with (T.
The reason for this is clarified as more
examples are considered.

Why (CONS ? Because we are building a list --COMMANDMENT No. 2.

Why (FIRSTS (CDR L)) ? Because we can only look at one S-expression at
atime. In order to do this, we must recurse.

Why))) ? Because these are the matching parentheses for
(COND and the first line, and they always appear
at the end of a function definition.

Keeping in mind the definition of (FIRSTS L), A
what is a typical element of the value of
(FIRSTS L), where

L is ((A B)(C D)(E F))

3.86)

3.87)

3.88)

3.89)

3.90)

3.91)

3.92)

3.93)

3.94)

3.95)

3.96)

3.97)

3.98)

What is another typical element? C, or E.

Suppose there was a function (SECONDS L). B, or D, or F.
What would be a typical element of the value

of (SECONDS L), where
Lis ((A B)(C D)(E F))

How do we describe a typical element for By taking the CAR of (CAR L) -- (CAR (CAR L)).
(FIRSTS L) See Chapter 1.

As we find a typical element of (FIRSTS L), We CONS it onto the recursion -~ (FIRSTS (CDR L)).
what do we do with it?

COMMANDMENT No. 3

Thou shalt always realize when building a list, thou

need only describe the first typical element, and then

CONS it onto the natural recursion.

NOTE: You have just read THE mast important statement

in this book. Please read it again.

From COMMANDMENT No. 3, we can now fill in more (fT (CONS (CAR (CAR L)) (FIRSTS (CDR L))))

of the function (FIRSTS L). What does the last fi
line look like now? TYPICAL ELEMENT NATURAL RECURSION

What does this function do? Nothing yet.
We are still missing one important ingredient

(FIRSTS (LAMBDA (L) in our recipe. The line ((NULL L)) needs
(COND a value for the case where L is the null list.

((NULL L)) We can, however, proceed without it for now.
(T (CONS (CAR (CAR L)) (FIRSTS (CDR L))))

») »))

where

Lis ((A B)(C D)(E F)).

(NULL L), where No,
L is ((A B)(C D)(E F)) so move to the next line.

What is the meaning of the line It saves (CAR (CAR L)) to CONS it onto (FIRSTS (CDR L)),
(T (CONS (CAR (CAR L)) (FIRSTS (CDR L)))) when it finds that value. To find (FIRSTS (CDR L)),

we recurse to the original function, (FIRSTS L),

with the new argument (CDR L).

(NULL L), where No,
L is ((C D) F)) so move to the next line.

What is the meaning of the line Save (CAR (CAR L)), and recurse with (FIRSTS (CDR L)).
(T (CONS (CAR (CAR L)) (FIRSTS (CDR L))))

(NULL L), where No,
Lis ((E F)) so move ta the next line.

What is the meaning of the line Save (CAR (CAR L)), and recurse with (FIRSTS (CDR L)).
(T (CONS (CAR (CAR L)) (FIRSTS (CDR L))))

(NULL L) Yes,

21

3.99) Now, what is the value of the line There is no value; something is missing.

((NULL L) »/
ee es

3.100) What do we need to CONS atoms onto? A list.
Remember PRINCIPLE No. 3 -- see Chapter 1.

a

3.101) What value can we give the function in the case Since the final value must be a list, we cannot
that (NULL L) is true, for the purpose of use T or F as our value, so how about ()?

CONSing?
nD

3.102) With () as a value, we now have three CONS steps (ACE).

‘to go back and pick up.

I. We need to: 1. CONS E onto ().
2. CONS C onto the value of 1.
3. CONS A onto the value of 2.

or, alternatively,

II. We need to: 1. CONS A onto the value of 2.
2. CONS C onto the value of 3.

3. CONS E onto ().

or, alternatively,

III. We need to: CONS A onto the CONS of C onto
the CONS of E onto ().

In any case, what is the final value of (FIRSTS L) ?

3.103) With which of the three alternatives are you Correct!
most comfortable? Now you use that one,
Re a ASR 2

3.104) (INSERTR OLD NEW LAT), where (ICE CREAM WITH FUDGE TOPPING FOR DESSERT)

OLD is FUDGE

NEW is TOPPING, and
LAT is (ICE CREAM WITH FUDGE FOR DESSERT)
eS

3.105) (INSERTR OLD NEW LAT), where (TACOS TAMALES AND JALAPENO SALSA)
OLD is AND
NEW is JALAPENO, and
LAT is (TACOS TAMALES AND SALSA)

3.106) (INSERTR OLD NEW LAT), where (ABCDEFGD&#)

OLD is D

NEW is E, and
LAT is (A BC DF GD H)

3.107) In your own words, what does In our own words:

(INSERTR OLD NEW LAT) "Tt needs three arguments: the atoms OLD and NEW,

do? and a LAT. INSERTR builds a LAT with NEW inserted

to the right of the first occurrence of OLD."

3.108) See if you can write the function (INSERTR (LAMBDA (OLD NEW LAT)

(INSERTR OLD NEW LAT). (COND

((NULL LAT)())
((EQ (CAR LAT) OLD) (CDR LAT))

(T (CONS (CAR LAT) (INSERTR OLD NEW (CDR LAT))))

»)

If you were unable to write this much, you
should review the PRINCIPLES and COMMANDMENTS.

3.109) What is the value of the INSERTR we just wrote, where (ICE CREAM WITH FOR DESSERT)

OLD is FUDGE

NEW is TOPPING, and

LAT is (ICE CREAM WITH FUDGE FOR DESSERT)

3.110) Notice that so far, this is the same as REMBER; When (CAR LAT) is the same as OLD, we want to

but for (INSERTR OLD NEW LAT), what do we do, insert NEW to the right.

where (EQ (CAR LAT) OLD) is true?
SS ——_ ———————_—————— OT ono

22

3.111)

3.112)

3.113)

3.114)

3.115)

3.116)

3.117)

3.118)

3.119)

How is this done? Let's try CONS NEW onto (CDR LAT).
a

Now we have (ICE CREAM WITH TOPPING FOR DESSERT)

(INSERTR (LAMBDA (OLD NEW LAT)
(COND
((NULL LAT)())
((EQ (CAR LAT) OLD) (CONS NEW (CDR LAT)))

(T (CONS (CAR LAT) (INSERTR OLD NEW (CDR LAT))))

What is (INSERTR OLD NEW LAT), where
OLD is FUDGE

NEW is TOPPING, and
LAT is (ICE CREAM WITH FUDGE FOR DESSERT)

Is this the list we wanted? No,

we have only replaced FUDGE with TOPPING.

What still needs to be done? Somehow we need to include the atom which is

the same as OLD before the atom NEW.

How can we include OLD before NEW? Try CONSing OLD onto

, (CONS NEW (CDR LAT))

CINSERTR (LAMBDA (OLD NEW LAT)
(COND
((NULL LAT) ())

Now you should be able to write the rest of
the function

(INSERTR OLD NEW LAT)
Do it. (CEQ (CAR LAT) OLD) (CONS OLD (CONS NEW (CDR LAT))))

(T (CONS (CAR LAT) (INSERTR OLD NEW (CDR LAT))))

»))

Notice that, where OLD is FUDGE, NEW is TOPPING,

and LAT is (ICE CREAM WITH FUDGE FOR DESSERT), the
value of the function is

(ICE CREAM WITH FUDGE TOPPING FOR DESSERT).

If you got this right, have one.

Now try (INSERTL OLD NEW LAT). This much is trivial -- right?
HINT: INSERTL inserts the atom NEW to the left
of the first occurrence of the atom OLD. CINSERTL (LAMBDA (OLD NEW LAT)

(COND

((NULL LAT)()).
({EQ (CAR LAT) OLD) (CONS NEW (CONS (CAR LAT)

(CDR LAT))))
(T (CONS (CAR LAT) (INSERTL OLD NEW (CDR LAT))))

)_»))

Did you think of a different way to do that? For example, this line could have been:
((EQ (CAR LAT) OLD) (CONS NEW (CONS OLD (CDR LAT))))

or even better, like this:
((EQ (CAR LAT) OLD) (CONS NEW LAT)),

since (CONS OLD (CDR LAT)) is the same as LAT.

Now try to write (SUBST OLD NEW LAT). Obviously:
HINT: (SUBST OLD NEW LAT) replaces the first

occurrence of OLD in the LAT with the atom NEW. (SUBST (LAMBDA (OLD NEW LAT)
For example, where (COND

OLD is FUDGE (NULL LAT) ())
NEW is TOPPING, and ((EQ (CAR LAT) OLD) (CONS NEW (CDR LAT)))
LAT is (ICE CREAM WITH FUDGE FOR DESSERT), (T (CONS (CAR LAT) (SUBST OLD NEW (CDR LAT))))

the value is) »
(ICE CREAM WITH TOPPING FOR DESSERT)

Now you have the idea. Notice that this is the same as our second attempt
at INSERTR.

23

Now go CONS a piece of cake into your mouth.

4.1)

4.2)

4.3)

4.4)

4.5)

4.6)

4.7)

4.8)

4.9)

4.10)

4.11)

4.12)

4.13)

4.14)

4.15)

4.16)

CHAPTER 4:

Is 14 an atom?

NUMBERS GAMES

Yes,

it is, because we are expanding the value of ATOM
to include all numbers.

Is (ATOM N) true or false where
Nis 14

Is -3 a number?

Is 3.1415 a number?

i
T >
because 14 is an atom. This extends the
definition of what an atom can be.

No,

since negative values are not considered here.

No,
since only whole numbers are considered here.

Are ~3 and 3.1415 numbers available in LISP Yes,

howéver, only whole numbers are considered here.

What is (ADD1 N), where 68

N is 67

What is (SUB1 N), where 4
Nis 5

Is (ZEROP N) true, or false, where T.
Nis 0

Is (ZEROP N) true, or false, where F.
N is 1492

Can you write a function (GREATERP Nl N2), using How about:

(ZEROP N), (ADDI N), and (SUB1 N)?
(GREATERP Nl N2), where (GREATERP (LAMBDA (Ni N2)

Nl is 12, and (COND
N2 is 11, has the value T: ((ZEROP N2) T)

where ((ZEROP N1) F)

Nl is 6, and (Tf (GREATERP (SUB1 N1) (SUB1 N2)))

N2 is 45, has the value F.) »))

Did we just violate COMMANDMENT No. 1? Yes,
however, we can treat ZEROP like NULL since ZEROP

tests if a number is empty and NULL tests if a
list is empty.

Is the way we wrote (GREATERP Nl N2) correct? No;
try it for the case where NI and N2 are the same

number. Let Nl and N2 be 3.

(ZEROP N2), where No,
Nl is 3, and so move to the next question.
N2 is 3

(ZEROP Ni), where No,
Nl is 3, and so move to the next question.
N2 is 3

What is the meaning of the line Recurse,
(Tf (GREATERP (SUB1 N1)(SUB1 N2))) but with both the arguments reduced by one.

(ZEROP N2), where

Nl is 2, and
N2 is 2

No,

so move to the next question.

4.17)

4.18)

4.19)

4.20)

4.21)

4.22)

4,23)

4,24)

4.25)

4.26)

4.27)

4.28)

4.29)

4.30)

4.31)

(ZEROP Nl), where No,
Nl is 2, and so. move to the next question.
N2 is 2

What is the meaning of the line Recurse,
(Tf (GREATERP (SUB1 N1)(SUB1 N2))) but with both arguments closer to zero by one.

(ZEROP N2), where No,
Nl is 1, and so move to the next question.

N2 is 1

(ZEROP Nl), where No,
Ni is 1, and so move to the next question.
N2 is 1

What is the meaning of the line Recurse,

(T (GREATERP (SUB1 N1)(SUB1 N2))) but with both arguments closer to zero by one.

(ZEROP N2), where Yes,-
Nl is 0, and so the value of (GREATERP Ni N2) is T.

N2 is 0

Is this correct? No,
because 3 is not greater than 3.

What can we do to the function (GREATERP Ni N2) Switch the ZEROP statements, that is:
to take care of this subtle mistake? :

(GREATERP (LAMBDA (Nl N2)

(COND

((ZEROP N1) F)

((ZEROP N2) T)
(T (GREATERP (SUB1 N1)(SUB1 N2)))

)))

True or false: Nl and N2 are the same numeric True,
atoms where because both Nl and N2 are the numeric atom 1492.

Nl is 1492 and
N2 is 1492

Is (EQ Nl N2) true or false, where No answer,
Nl is the argument 1492 and because EQ is only defined for literal atoms.
N2 is the argument 1492 Althouth the definition of atom has been extended,

the function EQ has not been similarly extended.

Is (EQN N1 N2) true or false, where True,
Ni is the argument 1492 and because (EQN Nl N2) is just another way to ask
N2 is the argument 1492 if Nl and N2 are the same numeric atom.

Can you write the function (EQN N1 N2), using (EQN (LAMBDA (N1 N2)
(ZEROP N), (ADDL N) and (SUB1 N)? (COND

(EQN Ni N2), where ((ZEROP N2)(ZEROP N1))

N1 is 12 and ((ZEROP N1) F)

N2 is 12 has the value T; (T (EQN (SUB1 N1)(SUB1 N2)))
where ») »)

Nl is 13 and

N2 is 12 has the value F.

What is somewhat unusual about the line Here,

((ZEROP N2)(ZEROP N1)) we ask if N2 is 0; if it is, then the value
of EQN is True if Nl is 0 and False if Nl is
not 0. In other words, we answered a question
with a question.

What is (DIFFERENCE Nl N2), where 5

Nl is 8, and
N2 is 3

What is (DIFFERENCE Nl N2), where 8
Ni is 17, and

N2 is 9

26

4.32)

4.33)

4.34)

4.35)

4.36)

4.37)

4.38)

4.39)

4.40)

4.41)

4.42)

4.43)

4,44)

4.45)

4.46)

Try to write (DIFFERENCE Nil N2) How about this:
HINT: Use (SUB1 N).

(DIFFERENCE (LAMBDA (Nl N2)

(COND

((ZEROP N2) Ni)
(T (DIFFERENCE (SUB1 N1) (SUB1 N2)))

) »))

Can you describe in your own words how It takes two numbers as arguments, and reduces
(DIFFERENCE N1 N2) both of them by one, until the smaller --N2--

does what it does? hits zero. When N2 hits zero, the value of the

Where function is the other number --3.

Nl is 8, and
N2 is 5

What is (DIFFERENCE Nl N2), where No answer,
Nl is 3, and because (SUB1 N1), where Nl is 0 is not a number.
N2 is 8 That is, -1 is not a number, here.

What would be a good value for There are a few alternatives:

(DIFFERENCE N1.N2), 1. O, since it is the smallest number, or
where 2. 5, This is the alternative we choose, because

Nl is 3, and it is the difference between N1 and N2.
N2 is 8 .

How would you change DIFFERENCE to take care of By including another ZEROP line for M.
the case where N2 is greater than N1?

Rewrite (DIFFERENCE Nl N2) to take care of the (DIFFERENCE (LAMBDA (N1 N2)
case where N2 is greater than Nl. (COND

((ZEROP N2) N1)

((ZEROP N1) N2)
(T (DIFFERENCE (SUB1 N1)(SUB1 N2)))

What is (PLUS Nl N2), where 58
Nl is 46, and
N2 is 12

Try to write (PLUS N1 N2). {PLUS (LAMBDA (N1 N2)

HINT: It uses ZEROP, ADD], and SUB1. (COND

((ZEROP Ni) N2) d
(T (PLUS (SUB1 Ni) (ADD1 N2)))

>)

Wasn't that easy?

Try to follow (PLUS Nl N2), where Your answer should be 7.
Nl is 2, and

N2 is 5

Is this a VEC? No,
(1 28 xX 4 3) it is just a list of atoms. Note: VEC stands for

: vector.

‘Is ‘this a VEC? Yes,
(2 11 3 79 47 6) because it is a list of numbers.

Is this a VEC? No,
(3 (7 4) 13 9) because it is not a list of numbers -- (7 4) is

not a number.

Is this a VEC? Yes, ‘
() it is a list of --zero-~ numbers. This special

case is the null VEC.

What is (ADDVEC VEC), where 17
VEC is (3 5 2 7)

What is (ADDVEC VEC), where 43
VEC is (15 6 7 12 3)

27

4.47)

4.48)

4.49)

4.50)

4.51)

4.52)

4.53)

4.54)

4.55)

4.56)

4.57)

4.58)

4.59)

4.60)

4.61)

4.62)

4.63)

What does (ADDVEC VEC) do? It builds a number by totaling all the numbers
in the VEC.

What is the natural way to build numbers, By using PLUS.
just as CONS is the natural way to build

lists?

When building lists with CONS, the value of the 0
terminal condition is (). What should be the

value of the terminal condition when building
numbers?

What is the natural terminal condition for (NULL L)
lists?

What is the natural terminal condition for (NULL VEC),
VECs? because a VEC is also a ltst.

When you want to build a number from a list of ((NULL VEC) 0),
numbers, what should the terminal condition line just as ((NULL L)()) is the terminal condition

look like? for lists.

What is the terminal line of ((NULL VEC) 0)
(ADDVEC VEC)

What does CONS do? CONS builds lists.

What does (ADDVEC VEC) do? ADDVEC builds a number by totaling all the numbers
in a VEC.

What does (ADDVEC VEC) use to build a number? It uses PLUS,
because PLUS builds numbers!

What will be the last line in the function: (I (PLUS (CAR VEC) (ADDVEC (CDR VEC))))
Notice the similarity between this line, and the

(ADDVEC (LAMBDA (VEC) last line of the function (REMBER A LAT):
(COND (ZT (CONS (CAR LAT) (REMBER A (CDR LAT))))
((NULL VEC) 0)

») »))

What is (TIMES Nl N2), where 15
Nl is 5, and
N2 is 3

What is (TIMES Nl N2), where 52
Nl is 13, and

N2 is 4

What does (TIMES Nl N2) do? It builds up a number by adding Nl up N2 times.

What is the terminal condition for ((ZEROP N2) 0)
(TIMES N1 N2) .

Since (ZEROP N2) is the terminal condition, N2 (SUB1 N2)
must eventually be reduced to zero. What
function is used to do this?

Try to write the function (TIMES (LAMBDA (N1 N2)
(TIMES N1 N2) (COND

((ZEROP N2) 0)
(T (PLUS Ni (TIMES Ni (SUB1 N2))))

28

4.64)

4.65)

4.66)

4.67)

4.68)

4.69)

4.70)

4.71)

4.72)

4.73)

4.74)

4.75)

4.76)

4.77)

4.78)

4.79)

4.80)

4.81)

4.82)

4.83)

4.84)

4.85)

What is (TIMES N1 N2), where 36,
Nl is 12, and but let's follow through the function one time to
N2 is 3 see how we get this value.

(ZEROP N2) No.

What is the meaning of the line It adds Nl --12---to the natural recursion:
(T (PLUS N1 (TIMES N1 (SUB1 N2)))) (TIMES N1 (SUB1 N2))

What are the new arguments of Nl is 12, and
(TIMES Ni N2) N2 is 2.

(ZEROP N2) No.

What is the meaning of the line It adds Nl --12-- to (TIMES Ni (SUB1 N2))
(T (PLUS N1 (TIMES N1 (SUB1 N2))))

What are the new arguments of Nl is 12, and
(TIMES Nl N2) N2 is 1.

(ZEROP N2) No.

What is the meaning of the line It adds N1 --12-- to (TIMES Nl (SUB1 N2))
(Tf (PLUS Nl (TIMES N1 (SUB1 N2))))

What is the value of the line 0,

((ZEROP N2) 0) because (ZEROP N2) is now true.

Are we finished now? No.

Why not? Because we still have three PLUS's to pick up.

What is the value of the function? PLUS 12 to PLUS 12 to PLUS 12 to 0 --36.
Notice that Nl has been PLUS'd N2 times.

What is (QUOTIENT Ni N2), where 3
Nl is 12, and

N2 is 4

What is (REMAINDER N1 N2), where 0
Nl is 12, and
N2 is 4

What is (QUOTIENT Nl N2), where 2
Nl is 7, and
N2 is 3

What is (REMAINDER N1 N2), where 1
Nl is 7, and

N2 is 3

What is (QUOTIENT N1 N2), where 0
N1 is 0, and
N2 is 4

What is (REMAINDER Nl] N2), where 0
Nl is 0, and
N2 is 4

What is (QUOTIENT Nl N2), where 0
N1 is 3, and

N2 is 7

What is (REMAINDER Nl N2), where 3
Nl is 3, and

N2 is 7

Try to write the function How about
(QUOTIENT N1 N2)

(QUOTIENT (LAMBDA (N1 N2}
(COND
((ZEROP N1) 0)
(T (ADD1 (QUOTIENT (DIFFERENCE Ni N2) N2)))

)»)
29

4.86)

4.87)

4.88)

4.89)

4.90)

4.91)

4.92)

4.93)

4.94)

4.95)

4.96)

4.97)

4.98)

4.99)

4.100)

4.101)

Does this work, where Let's see.
Nl is 5, and
N2 is 2

(ZEROP N1) No,
so move to the next line.

What is the meaning of the line We are adding one to the natural recursion:
(T (ADDL (QUOTIENT (DIFFERENCE Nl N2) N2))) (QUOTIENT (DIFFERENCE Nl N2) N2)

What are the arguments of (QUOTIENT Nl N2), Nl is 3 --(DIFFERENCE Nl N2)--, and
after we recursed once? N2 is 2.

(ZEROP N1) No,
so move to the next line.

(T (ADD1 (QUOTIENT (DIFFERENCE Nl N2) N2))) This again adds one.to the natural recursion.

What are the arguments of (QUOTIENT N1 N2), now? Nl is 1, and

N2 is 2.

(ZEROP N1) No,
so move to the next line.

(T (ADD1 (QUOTIENT (DIFFERENCE Nl N2) N2))) This again adds one to the recursion.

What are the arguments of (QUOTIENT Nl N2), now? Nl is 1 --(DIFFERENCE Nl N2)--, and
N2 is 2.

Is this what we wanted? No.
Obviously, this will never reach the terminal
condition.

Do we need a different terminal condition? Yes.

When do we want to stop adding one to the value? When N2 is greater than N1.

So what is the correct terminal condition? (GREATERP N2 N1)

What should be the value given when the terminal 0,
condition is true? because 0 will not affect ADD1.

COMMANDMENT No. 4

When building a value with ADD] or PLUS, always use

0 for the value of the terminating line; when building

a value with TIMES, always use 1 for the value of the

terminating line, because 0 and 1 do not affect the

final value of the function. When building a value

with CONS, always consider first (_) for the value of

the terminating line.

When using ADD1, the terminal line value is 0.

When using PLUS, the terminal line value is 0.

When using TIMES, the terminal line value is 1.

When using CONS, the terminal line value is usually ().

What is (VECPLUS VEC] VEC2), where (11 11:11 «11 #11)

VEC] is (3 6 9 11 4), and
VEC2 is (8 5 2 0 7)

4.102) What is (VECPLUS VEC1 VEC2), where (6 9)
VEC1 is (2 3), and
VEC2 is (4 6)

4.103) What does (VECPLUS VEC] VEC2) do? It adds the first number of VEC] to the first

number in VEC2, then it adds the second number

in VEC1 to the second number in VEC2, and so on,

for the VECs of the same length.

4.104) Can you write (VECPLUS VEC] VEC2) ? (VECPLUS (LAMBDA (VECi VEC2)

(COND

((NULL VECL)())
(T (CONS (PLUS (CAR VEC1) (CAR VEC2))(VECPLUS

(CDR VEC1) (CDR VEC2))))

> »))

4.105) What are the arguments of PLUS in the last line? (CAR VEC1) and (CAR VEC2)

4.106) What are the arguments of CONS in the last line? (PLUS (CAR VEC1) (CAR VEC2)), and

(VECPLUS (CDR VEC1) (CDR VEC2)).

4.107) What is (VECPLUS VEC1 VEC2), where (7613),
VEC] is (3 7), and but let's see just how it works.
VEC2 is (4 6)

4.108) (NULL VEC1) No.

4.109) (T (CONS (PLUS (CAR VEC1) (CAR VEC2)) (VECPLUS CONS 7 onto the natural recursion:

(CDR VEC1) (CDR VEC2)))) (VECPLUS (CDR VEC1) (CDR VEC2))

4.110) Why does the natural recursion include the Because the typical element of the final value
CDR of both arguments? uses the CAR of both VECs, so now we are ready

to consider the rest of both VECs.

4.111) (NULL VEC1), where No.
VEC] is now (7), and

VEC2 is now (6)

4.112) (T (CONS (PLUS (CAR VEC1) (CAR VEC2)) (VECPLUS CONS 13 onto the natural recursion.
(CDR VEC1) (CDR VEC2))))

4.113) (NULL VEC1) Yes.

4.114) What is the value of the line? q)

4.115) What is the value of the function? (7 13),
. by CONSing 7 onto the CONS of 13 onto ().

4.116) What problem arises when we want to do When VEC1 eventually gets to be (), we quit,
(VECPLUS VEC] VEC2), where but that means the final value will be (7 13),
VEC1 is (3 7), and which is wrong. The final value should be
VEC2 is (4 6 8 1) (7 13 8 1)

HINT: Try going through the function with
these arguments.

4.117) What trivial change can you make in the terminal Change ((NULL VEC1)()) to
condition line to get the correct final value? ((NULL VEC1) VEC2)

4.118) What is (VECPLUS VEC] VEC2), where No answer, F
VEC] is (3 7 8 1), and since VEC2 will become null before VEC1.

VEC2 is (4 6) See PRINCIPLES No.1 and No. 2.

4.119) What do we need to include in our function Another terminal condition.

(VECPLUS VEC1 VEC2)

4.120) What is the other terminal line? ((NULL VEC2) VEC1)

31

4.121)

4.122)

4.123)

4.124)

4.125)

4.126)

4.127)

4.128)

4.129)

4.130)

4.131)

4.132)

4.133)

4.134)

4.135)

So now that we have expanded our function
definition so that VECPLUS works for any two
VECs, see if you can rewrite it.

(VECPLUS (LAMBDA (VEC1 VEC2)
(COND
(QNULL VEC1) VEC2)

((NULL VEC2) VEC1)
(T (CONS (PLUS (CAR VEC1) (CAR VEC2)) (VECPLUS

(CDR VEC1) (CDR VEC2))))

Does the order of the two terminal conditions No.
matter?

What is (MAXVEC VEC), where 13
VEC is (4 8 2 13 12)

What is (MAXVEC VEC), where 942
VEC is (468 942 8 27 43)

What is (MAXVEC VEC), where 4

VEC is (4)
>

get the idea?

Can you write the function (MAXVEC VEC),
which has as its final value the greatest
number in the VEC?

In the first (MAXVEC VEC) that we wrote, what is
the meaning of the line

((GREATERP (CAR VEC) (MAXVEC (CDR VEC))) (CAR VEC))

What is the meaning of the line
(T (MAXVEC (CDR VEC)))

In the second (MAXVEC VEC) that we wrote, what is

the meaning of the line
((GREATERP (CAR VEC) (CAR (CDR VEC))) (MAXVEC

(CONS (CAR VEC) (CDR (CDR VEC)))))

How did we throw away the second number?

(MAXVEC (LAMBDA (VEC)
(COND
C(QNULL (CDR VEC)) (CAR VEC))
((GREATERP (CAR VEC) (MAXVEC (CDR VEC))) (CAR VEC))

(T (MAXVEC (CDR VEC)))

)_))

This is the way we would write the function, but

it also could have been written as follows:

(MAXVEC (LAMBDA (VEC)
(COND
(CNULL (CDR VEC)) (CAR VEC))
((GREATERP (CAR VEC) (CAR (CDR VEC))) (MAXVEC

(CONS (CAR VEC)(CDR (CDR VEC)))))
(Tf (MAXVEC (CDR VEC)))

)»)

Try to follow through both ways until you are

satisfied that you understand both of them. Use

whichever makes more sense to you.

((GREATERP (CAR VEC) (MAXVEC (CDR VEC))) (CAR VEC))
asks if the first number in the VEC is greater

than the biggest number in the rest of the VEC.
If it is, then the first number is the one we want.

Since we know by now that the first number is not
the greatest, then we throw it away, and start
all over again.

It means we ask if the first number is greater

than the second number. If it is, we recurse
after throwing away the second number.

(CONS (CAR VEC) (CDR (CDR VEC)))

What would happen if we tried to do this where
VEC is (6)

No answer.
See PRINCIPLE No. 2.

How did we keep this from ever happening?

Go through (MAXVEC VEC) both ways, where
VEC is (4 9 13 2 13 12)

What is the answer?

In the second (MAXVEC VEC), which 13 is the
final value?

In the first (MAXVEC VEC), which 13 is the
final value?

The terminal condition was

(NULL (CDR VEC))
instead of

(NULL VEC)

(4 9 13 2 13 12)

(4 9 13 2 13 12)

4.136)

4.137)

4.138)

4.139)

4.140)

4.141)

4.142)

4.143)

4.144)

4.145)

4.146)

4.147)

4.148)

4.149)

4.150)

Now write (REMAINDER Nl N2) (REMAINDER (LAMBDA (Ni N2)
(COND
((GREATERP N2 N1) N1)
(T (REMAINDER (DIFFERENCE Nl N2) N2))

) »)

What is (LESSP Nl N2), where T
Nl is 4, and

N2 is 6

(LESSP N1 N2), where F
Nl is 8, and

N2 is 3

(LESSP Nl N2), where F
Nl is 6, and

N2 is 6

(LESSP (LAMBDA (N1 N2)
(COND
((ZEROP N2) F)

_ ((ZEROP N1) T)
(T (LESSP (SUB1 N1)(SUB1 N2)))

) »))

Now try to write (LESSP N1 N2)

(EXPT N1 N2), where 1
Nl is 1, and

N2 is 1

(EXPT Ni N2), where 8
Ni is 2, and

N2 is 3

(EXPT Nl N2), where 125
Nl is 5, and

N2 is 3

Now write (EXPT Nl N2) (EXPT (LAMBDA (N1 N2)

HINT: See COMMANDMENT No. 4. (COND

((ZEROP N2) 1)
(T (TIMES Nl (EXPT N1 (SUB1 N2))))

)_»))

What is the value of (LENGTH LAT), where 6
LAT is (HOTDOGS WITH MUSTARD SAUERKRAUT

AND PICKLES)

What is (LENGTH LAT), where 5
LAT is (HAM AND CHEESE ON RYE)

Now try to write (LENGTH LAT) (LENGTH (LAMBDA (LAT)
(COND

((NULL LAT) 0)

(T (ADD1 (LENGTH (CDR LAT))))

)

What is (PICK N LAT), where MACARONI
Nis 4, and
LAT is (LASAGNA SPAGHETTI RAVIOLI MACARONI MEATBALL)

What is (PICK N LAT), where No answer.
N is 0, and

LAT is ()

Try to write (PICK N LAT) (PICK (LAMBDA (N LAT)

(COND
((ZEROP (SUB1 N)) (CAR LAT))
(T (PICK (SUB1 N) (CDR LAT)))

33

Wouldn't a HAM AND CHEESE ON RYE be good right now?

Don't forget the mustard.

4.151)

*,.152)

4.153)

4.154)

4.155)

4.156)

4.157)

4.158)

What is (REMPICK N LAT), where (HOTDOGS WITH MUSTARD)
N is.3, and
LAT is (HOTDOGS WITH HOT MUSTARD)

What is (REMPICK N LAT), where No answer.
N is 0, and

LAT is ()

Now try to write (REMPICK N LAT) (REMPICK (LAMBDA (N LAT)

(COND

({ZEROP (SUB1 N)) (CDR LAT))

(T (CONS (CAR LAT) (REMPICK (SUB1 N) (CDR LAT))))

Is (NUMBERP AT) true, or false, where F,
AT is TOMATO

Is (NUMBERP AT) true, or false, where TT.
AT is 76

Can you write (NUMBERP A) which is True if A is No,
a numeric atom and False if A is a literal atom? this like ADD1, SUB1, ZEROP, CAR, CDR, CONS, NULL

EQ and ATOM is a primitive (built-in) function.

Now using (NUMBERP AT), write a function (MAKALAT (LAMBDA (L)
(MAKALAT L), which gives a LAT as a final (COND

value, with all the numbers removed. (CNULL L)())
For example, where (CNUMBERP (CAR L)) (MAKALAT (CDR L)))

L is (5 PEARS 6 PRUNES 9 DATES) (T (CONS (CAR L)(MAKALAT (CDR L))))

the final value is (PEARS PRUNES DATES).

Now write (MAKAVEC L), which gives a VEC as a final (MAKAVEC (LAMBDA (L)
value. (COND

CQNULL L)())
(C(NUMBERP (CAR L)) (CONS (CAR L)(MARKAVEC (CDR L))))

(T (MAKAVEC (CDR L)))

)

35

5.1)

5.2)

5.3)

5.4)

5.6)

5.7)

5.8)

5.9)

5.10)

5.11)

5.12)

5.13)

CHAPTER 5: THE MULTICHAPTER CHAPTER

Write the function (MEMBER (LAMBDA (A LAT)
(MEMBER A LAT) (COND

((NULL LAT) F)

((EQ (CAR LAT) A) T)
(T (MEMBER A (CDR LAT)))

) »))

Do you recall, or can you see now, what (MEMBER A LAT) checks each atom of the LAT to see

MEMBER does. if each is the same as the atom A. When it finds
the first occurrence of A, it stops and gives a
value of T, since A is a member of the LAT.

Write the function (REMBER (LAMBDA (A LAT)
(REMBER A LAT) (COND

((NULL LAT) ())
(CEQ (CAR LAT) A) (CDR LAT))

(T (CONS (CAR LAT) (REMBER A (CDR LAT))))

)

Do you recall, or can you see now, what (REMBER A LAT) looks at each atom of the LAT to

REMBER does? see if it is equal to the atom A. If it is not,

REMBER saves the atom and proceeds. When it finds
the first occurrence of A, it stops and gives the

value (CDR LAT), or the rest of the LAT, so that
the final value is the same as the original LAT,

but with only the first occurrence of A missing.

Can you write a function called (MULTIREMBER A LAT), (MULTIREMBER (LAMBDA (A LAT)
which gives as its final value the LAT with all (COND
occurrences of A removed? C(C(NULL LAT) ())
HINT: What do we want as the value when (CEQ (CAR LAT) A) (MULTIREMBER A (CDR LAT)))

(EQ (CAR LAT) A) is true? (T (CONS (CAR LAT) (MULTIREMBER A (CDR LAT))))

Consider the example where)} ») b
A is CUP, and

LAT is (COFFEE CUP TEA CUP AND HICK CUP) Notice that after the first occurrence of A, we
now recurse with (MULTIREMBER A (CDR LAT)), in

order to remove the other possible occurrences.

The value for the function is (COFFEE TEA AND HICK).

Can you see how MULTIREMBER does what it does? Possibly not,

so we will go through the steps necessary to

arrive at the value (COFFEE TEA AND HICK).

(NULL LAT) No,

so move to the next line.

(EQ (CAR LAT) A) No,

so move to the next line.

What is the meaning of the whole line Save (CAR LAT) to be CONS'd onto the value of
(T (CONS (CAR LAT) (MULTIREMBER A (CDR LAT)))) (MULTIREMBER A (CDR LAT)) Later. Now find

(MULTIREMBER A (CDR LAT)).

(NULL LAT) No, so move to the next line.

(EQ (CAR LAT) A) Yes,
so forget (CAR LAT), and find (MULTIREMBER A (CDR LAT)).

(NULL LAT) No,

so move to the next line.

(EQ (CAR LAT) A) No,

so move to the next line.

36

5.14)

5.15)

5.16)

5.17)

5.18)

5.19)

5.20)

5.21)

5.22)

5.23)

5.24)

5.25)

5.26)

5.27)

5.28)

5.29)

5.30)

5.31)

5.32)

What is the meaning of the line

(T (CONS (CAR LAT) (MULTIREMBER A (CDR LAT))))

(NULL LAT)

Save (CAR LAT) -TEA- to be CONS'd onto the value
of (MULTIREMBER A (CDR LAT)) later. Now find

(MULTIREMBER A (CDR LAT)).

No,

so move to the next line.

(EQ (CAR LAT) A)

(NULL LAT)

Yes,

so forget (CAR LAT), and find (MULTIREMBER A (CDR LAT)).

No,

so move to the next line.

(EQ (CAR LAT) A) No,

so move to the next line.

What is the meaning of the line

(T (CONS (CAR LAT) (MULTIREMBER A (CDR LAT))))

(NULL LAT)

(EQ (CAR LAT) A)

Save (CAR LAT) --AND-- to be CONS'd onto the value
of (MULTIREMBER A (CDR LAT)) later. Now find

(MULTIREMBER A (CDR LAT)).

No,

so move to the next line.

No,

so move to the next line.

What is the meaning of the line

(Tf (CONS (CAR LAT) (MULTIREMBER A (CDR LAT))))
Save (CAR LAT) --HICK-~ to be CONS'd onto the value
of (MULTIREMBER A (CDR LAT)) later. Now find
(MULTIREMBER A (CDR LAT)).

(NULL LAT) No,

so move to the next line.

(EQ (CAR LAT) A)

(NULL LAT)

Yes,

so forget (CAR LAT), and find (MULTIREMBER A (CDR LAT)).

Yes,

so we have a value of ().

Are we finished?

What do we do next?

What do we do next?

No,

since we still have several saved up CONS
operations to pick up.

CONS the most recent (CAR LAT) we have --HICK--
onto ().

CONS AND onto (HICK).

What do we do next?

What do we do next?

Are we finished now?

Now can you write a function
(MULTIINSERTR OLD NEW LAT)

Try it.

CONS TEA onto (AND HICK).

CONS COFFEE onto (TEA AND HICK).

Yes. =

(MULTLINSERTR (LAMBDA (OLD NEW LAT)
(COND
((NULL LAT) ())
((EQ (CAR LAT) OLD) (CONS (CAR LAT) (CONS NEW

(MULTLINSERTR OLD NEW (CDR LAT)))))
(T (CONS (CAR LAT) (MULTIINSERTR OLD NEW (CDR LAT))))

It would also be correct to use OLD in

place of the underlined (CAR LAT).

Note:

37

5.33)

5.34)

5.35)

5.36)

5.37)

5.38)

(MULTIINSERTL (LAMBDA (OLD NEW LAT)
(COND

(QNULL LAT)())
((EQ (CAR LAT) OLD) (CONS NEW (CONS (CAR LAT)

(MULTIINSERTL OLD NEW (CDR LAT)))))
(Tf (CONS (CAR LAT) (MULTIINSERTL OLD NEW (CDR LAT))))

Now try to write the function
(MULTIINSERTL OLD NEW LAT)

Note: It would also be correct to use OLD in place

of the underlined (CAR LAT),

Is this function defined correctly? Not quite.

To find out why, go through the function, where
sea asi (LAMBDA (OLD NEW LAT) OLD is FISH

((NULL LAT) ()) NEW is FRIED, and

LAT is (FISH AND CHIPS OR FISH AND FRIES)
((EQ (CAR LAT) OLD) (CONS NEW (MULTIINSERTL

OLD NEW LAT)))
(T (CONS (CAR LAT) (MULTIINSERTL OLD NEW (CDR LAT))))

2

Was the terminal condition ever reached? No,
because you never get past the first occurrence of OLD.

COMMANDMENT No. 5

Thou shalt endeavor to change at least one argument while recursing.

The changing argument should be the one tested in the termination

condition(s) and it should be changed to be closer to termination, e.g.,

CDR with NULL and

SUB1 with ZEROP

but not

CONS with NULL

ADDI with ZEROP

Now write (MULTISUBST (LAMBDA (OLD NEW LAT)

(MULTISUBST OLD NEW LAT) (COND

CQNULL LAT) ())
((EQ (CAR LAT) OLD) (CONS NEW (MULTISUBST

OLD NEW (CDR LAT))))

(Tf (CONS (CAR LAT) (MULTISUBST OLD NEW (CDR LAT))))

»

Now write a function (OCCUR (LAMBDA (A LAT)

(OCCUR A LAT), (COND

which counts the number of times the atom A ((NULL LAT) 0)

occurs in LAT. ((EQ (CAR LAT) A) (ADDL (OCCUR A (CDR LAT))))

(T (OCCUR A (CDR LAT)))

»))

Write the function (ONEP N) where the function (ONEP (LAMBDA (N)
is True if Nis 1 (COND

((ZEROP N) F)
(T (ZEROP (SUB1 N)))

)))

(ONEP (LAMBDA (N)
(COND

(T (EQN N 1))
») »)

38

5.39) The second definition of ONEP is called a By removing
"one-liner." Is there a simple way to write (COND
"one-liners?" Try to guess what changes occur (T)
in the simplification of ONEP. we get

(ONEP (LAMBDA (N)
(EQN N 1)

»)

5.40) Now write a function (REMPICK (LAMBDA (N LAT)

(REMPICK N LAT), using (ONEP N) (COND
which removes the Nth atom of the Lat. ((ONEP N) (CDR LAT))
For example, where (T (CONS (CAR LAT) (REMPICK (SUB1 N) (CDR LAT))))

Nis 3, and »)»
LAT is (LEMON MERINGUE SALTY PIE),

the function has the value
(LEMON MERINGUE PIE).

5.41) Ie REMPICK a "multi-" function? No.

6.2)

6.3)

6.4)

6.5)

6.6)

6.7)

6.8)

6.9)

6.10)

6.11)

6.12)

6.13)

6.14)

CHAPTER 6: *OH MY GAWD*

True or false: Ts

(NOT (ATOM S)), where

S is (HUNGARIAN GOULASH)

(NOT (ATOM S)), where F.

S is ATOM

(NOT (ATOM S)), where T.
S is (TURKISH ((COFFEE) AND) BAKLAVA) Get the idea?

What is (LEFTMOSTAT L), where HOT
L is ((HOT) (TUNA (AND)) CHEESE)

.(ISLAT L), where F.
L is ((HOT) (TUNA (AND)) CHEESE)

Is (CAR L) an atom, where No.
L is ((HOT)(TUNA (AND)) CHEESE)

What is (LEFTMOSTAT L), where HAMBURGER

L is (((HAMBURGER) FRENCH) (FRIES (AND A) COKE))

What is (LEFIMOSTAT L), where 4
L is (((4) FOUR) 17 (SEVENTEEN))

Now see if you can write the function definition (LEFTMOSTAT (LAMBDA (L)

for (LEFIMOSTAT L) (COND

(QNULL L)())
((NOT (ATOM (CAR L)))(LEFIMOSTAT (CAR L)))

(T (CAR L))
») »)

Use one of our previous examples as arguments, and

try to follow through this to see how it works.

Notice that now we are recursing down the CAR of

the list, instead of the CDR of the list.

What is (REMBER* A L), where ((COFFEE) ((TEA)) (AND (HICK)))

A is CUP, and

L is ((COFFEE) CUP ((TEA) CUP)(AND (HICK)) CUP)

Note: "REMBER*" is pronounced "REMBER-STAR".

What is (REMBER* A L), where (((TOMATO)) ((BEAN)) (AND ((FLYING))))
A is SAUCE, and

L is (((TOMATO SAUCE)) ((BEAN) SAUCE) (AND
((FLYING)) SAUCE))

Now write (REMBER* A L) (REMBER* (LAMBDA (A L)

Note: "*" means "OH MY GAWD". (COND

((NULL L)())
((NOT (ATOM (CAR L))) (CONS (REMBER* A (CAR L))

(REMBER* A (CDR L))))
((EQ (CAR L) A) (REMBER* A (CDR L)))
(TE (CONS (CAR L) (REMBER* A (CDR L))))

(INSERTR* OLD NEW L), where (HOW (MUCH WOOD) COULD ((A WOOD CHUCK ROAST)
OLD is CHUCK (CHUCK ROAST) (IF (A) (WOOD CHUCK ROAST) COULD
NEW is ROAST, and ((CHUCK ROAST) WOOD))))
L is (HOW (MUCH WOOD) COULD ((A WOOD CHUCK)

(CHUCK) (IF (A) (WOOD CHUCK) COULD ((CHUCK)

WooD))))

Now write a function (INSERTR* OLD NEW L), CINSERTR* (LAMBDA (OLD NEW L)

which inserts the atom NEW to the right of (COND

OLD, regardless of where OLD occurs. C((NULL L)())
((NOT (ATOM (CAR L)))(CONS (INSERTR* OLD NEW

(CAR L)) CINSERTR* OLD NEW (CDR L))))
((EQ (CAR L) OLD) (CONS OLD (CONS NEW (INSERTR*

OLD NEW (CDR L)))))
(T (CONS (CAR L) (INSERTR* OLD NEW (CDR L))))

)_»))

40

6.15)

6.16)

6.17)

6.18)

6.19)

6.20)

6.21)

6.22)

6.23)

6.24)

How are (INSERTR* OLD NEW L), and (LEFITMOSTAT L) Both functions recurse with the CAR of their list
similar? arguments.

How does (REMBER* A L) differ from REMBER* recurses with the CAR as well as with the

(MULTIREMBER A LAT) ? CDR. It does not recurse with the CAR, however,
until it finds out that the CAR is not an atom.

How are (INSERTR* OLD NEW L), and (REMBER* A L) They both recur with the CAR as well as with the
similar? CDR, whenever the CAR is a list.

How are all *-functions --pronounced "star-functions"-- They all recurse with the CAR as well as with the

similar? CDR, whenever the CAR is a list.

COMMANDMENT No. 6

Thou shalt always recurse with the CAR

as well as with the CDR when writing

*-functions.

(OCCURSOMETHING A L), where 5
A is BANANA, and
L is ((BANANA) (SPLIT ((((BANANA ICE))) (CREAM

(BANANA)) SHERBERT)) (BANANA) (BREAD)
(BANANA BRANDY))

What is a better function name for (OCCUR* A L)

(OCCURSOMETHING A L)

(OCCUR* (LAMBDA (A L)
(COND
((NULL L) 0)
((NOT (ATOM (CAR L))) (PLUS (OCCUR* A (CAR L))

(OCCUR* A (CDR L))))
((EQ (CAR L) A)(ADD1 (OCCUR* A (CDR L))))
(T (OCCUR* A (CDR L)))

Write (OCCUR* A L)

(SUBST* OLD NEW L), where ((ORANGE) (SPLIT ((((ORANGE ICE))) (CREAM
OLD is BANANA (GRANGE)) SHERBERT)) (ORANGE) (BREAD)
NEW is ORANGE, and (ORANGE BRANDY))
L is ((BANANA) (SPLIT ((((BANANA ICE))) (CREAM

(BANANA)) SHERBERT)) (BANANA) (BREAD)
(BANANA BRANDY))

Write (SUBST* OLD NEW L) (SUBST* (LAMBDA (OLD NEW L)
(COND
((NULL L)()) :
C(NOT (ATOM (CAR L))) (CONS (SUBST* OLD NEW (CAR L))

(SUBST* OLD NEW (CDR L))))
((EQ (CAR L) OLD) (CONS NEW (SUBST* OLD NEW

(CDR L))))
(T (CONS (CAR L)(SUBST* OLD NEW (CDR L))))

) »))

CINSERTL* OLD NEW L), where (FRENCH FRIED ((POTATOES ((FRENCH FRIED)) (FISH))
OLD is FRIED ((FRENCH FRIED))) EGG)
NEW is FRENCH
L is (FRIED ((POTATOES ((FRIED))(FISH)) ((FRIED)))

EGG)

41

6.25)

6.26)

6.27)

6.28)

6.29)

6.30)

6.31)

6.32)

6.33)

6.34)

6.35)

6.36)

6.32)

6.38)

6.39)

Write (INSERTL* OLD NEW L) CINSERTL* (LAMBDA (OLD NEW L)
(COND

(NULL L)())
((NOT (ATOM (CAR L))) (CONS (INSERTL* OLD NEW

(CAR L)) (INSERTL* OLD NEW (CDR L))))
((EQ (CAR L) OLD) (CONS NEW (CONS OLD (INSERTL*

OLD NEW (CDR L)))))
(T (CONS (CAR L)(INSERTL* OLD NEW (CDR L))))

)_))

(AND (ATOM (CAR L))(EQ (CAR L) X)), where F
X is PIZZA, and
L is (MOZARELLA PIZZA)

Why is it false? Since AND asks (ATOM (CAR L)), and it is,
so then it asks (EQ (CAR L) X), and it is
not; hence AND has the value F.

What is (AND (ATOM (CAR L))(EQ (CAR L) X)), where F
X is PIZZA, AND

L is ((MOZARELLA MUSHROOM) PIZZA)

Why is it false? Since AND asks (ATOM (CAR L)), and it is not;
so AND has the value F.

Give an example for X and L, where AND is true. How about, where

X is PIZZA, and

L is (PIZZA (TASTES GOOD))

Can you put in your own words what the function The function AND is either true or false.
AND does? AND asks questions one at a time until it finds an

argument the value of which is false. Then AND
stops, making its value false. If it cannot find
one false argument, then the value of AND is true.

(OR (NOT (ATOM (CAR L)))(EQ (CAR L) X)), where T;
X is CURRIED, and
L is (CURRIED (SHRIMP WITH RICE))

Why is it true? (NOT (ATOM (CAR L))) is F, so we ask (EQ (CAR L) X),
which is T, so the value of OR is true.

(OR (NOT (ATOM (CAR L)))(EQ (CAR L) X)), where T.
X is CURRIED, and
L is ((CURRIED) SHRIMP WITH RICE)

Why is it true? (NOT (ATOM (CAR L))) is T, so the value of OR

is true.

(OR (NOT (ATOM (CAR L)))(EQ (CAR L) X)), where OR asks (NOT (ATOM (CAR L))), which is false, so

X is CURRTED and OR asks (EQ (CAR L) X), which is also false, so
L is (SHRIMP WITH CURRIED RICE) the value of OR is false.

Can you put in your own words what the function The function OR is either true or false.
OR does? OR asks questions one at a time until it finds an

argument the value of which is true. Then OR
stops, making its value true. If it cannot find
one true argument, then the value of OR is false.

True or false: It is possible that one of the t,t
arguments of AND and OR is not considered? because AND stops if the first argument has the

value F, and OR stops if the first argument has

the value T.

(MEMBER* A L), where F,
A is GRAPE, and since the atom GRAPE does not appear in the list L.

L is ((GRAPEFRUIT (RAISINS)) (WINE (AND) GRAPES))

tconp is a function; it also has this property.

42

6.40) (MEMBER* A L), where T,

A is CHIPS, and because the atom CHIPS appears in the Llis= 2-
L is ((POTATO) (CHIPS ((WITH) FISH) (CHIPS)))

(MEMBER* (LAMBDA (A L)
(COND

((NULL L) F)
((NOT (ATOM (CAR L)))(OR (MEMBER* A (CAR <.

(MEMBER* A (CDR L))))
((EQ (CAR L) A) T)
(T (MEMBER* A (CDR L)))

)».))

6.41) Write (MEMBER* A L).

6.42) What is (MEMBER* AL), where T.
A is CHIPS, and
L is ((POTATO) (CHIPS ((WITH) FISH) (CHIPS)))

6.43) Which CHIPS did it find? ((POTATO) (CHIPS ((WITH) FISH) (CHIPS)))

6.44) Try to combine the last two lines of (MEMBER* A L) (MEMBER2* (LAMBDA (A L)
into one line. Rewrite the function using this (COND
line. 7 ((NULL L) F)

« ((NOT (ATOM (CAR L))) (OR (MEMBER2* A (CAR L))

(MEMBER2* A (CDR L))))

(T (OR (EQ (CAR L) A) (MEMBER2* A (CDR L))))

) »))

6.45) Try to write (MEMBER2* AL) without using NOT. (MEMBER3* (LAMBDA (A L)
(COND

((NULL L) F)

((ATOM (CAR L)) (OR (EQ (CAR L) A)
(MEMBER3* A (CDR L))))

(T (OR (MEMBER3* A (CAR L)) (MEMBER3* A (CDR L))))

)))

6.46) Now, ,can you break up the last line of (MEMBER4* (LAMBDA (A L)
(MEMBER3* A L) to form two lines. (COND
HINT: See (MEMBER* A L) ((NULL L) F)

((ATOM (CAR L))(OR (EQ (CAR L) A)
(MEMBER4* A (CDR L))))

((MEMBER4* A (CAR L)) T)

(Tf (MEMBER4* A (CDR L)))

)_»))

6.47) What is unusual about (MEMBER4* A L) We are recursing in the question side of a line.

6.48) Have we ever seen recursion on the left side Yes,
of a line before (MEMBER4* A L) see (MAXVEC VEC).

6.49) Why does (EQ Nl N2), where Since EQ is only defined for atoms beginning with
Nl is 15, and letters.

N2 is 12

have no answer?

6.50) Why does (EQN Al A2) where Since EQN is only defined for numeric atoms.
Al is HARRY and
A2 is HARRY

have no answer?

6.51) Try to write a function (EQAN (LAMBDA (Al A2)
(EQAN Al A2) (COND

which is True if Al and A2 are the same atom. (CAND (NUMBERP Al) (NUMBERP A2)) (EQN Al A2))

((OR (NUMBERP Al) (NUMBERP A2)) F)
(T (EQ Al A2))

6.52) (EQUAL S1 S2), where F.
$1 is BANANAS, and -
S2 is (BANANAS)

6.53)

6.54)

6.55)

6.56)

6.57)

6.58)

6.59)

6.60)

6.61)

6.62)

6.63)

6.64)

6.65)

(EQUAL S1 S2), where T.
Sl is (STRAWBERRY ICE CREAM), and

S82 is (STRAWBERRY ICE CREAM)

(EQUAL S1 S2), where F.

Sl is (STRAWBERRY ICE CREAM), and

S2 is (STRAWBERRY CREAM ICE)

(EQUAL S1 S2), where F,
$1 is (BANANA ((SPLIT))), and
S2 is ((BANANA) (SPLIT))

(EQUAL S1 82), where F,
Sl is (BEEF ((SAUSAGE))(AND (SODA))), and
$2 is (BEEF ((SALAMI)) (AND (SODA)))

(EQUAL S1.S2), where T,
$1 is (5 APPLE PIES), and

$2 is (5 APPLE PIES)

Can you write in your own words what (EQUAL S1 $2) EQUAL determines if the S-expression S1 is exactly

does? the same as the S-expression S2.

Using EQAN, write (EQUAL $1 S2) (EQUAL (LAMBDA (S1 $2)
(COND
((AND (NOT (ATOM S1)) (NOT (ATOM $2)))

(AND (EQUAL (CAR S1) (CAR $2))
(EQUAL (CDR S1) (CDR S2))))

((AND (ATOM $1) (ATOM S2)) (EQAN S1 S2))

(T F)
> »)

(EQUAL S1 S2), where Your response should be no answer.
Sl is (), and However, (ATOM S) where S$ is () is True! Hence,

$2 is () (EQ S1 S2) and (EQUAL $1 S2) where Si is ()
and S2 is () are also True. The null list ()
is also referred to as the atom NIL.

Is EQUAL a "star-" function? Yes.

How would REMBER change if we replaced EQ (REMBER (LAMBDA (S L)

by EQUAL? (COND
((NULL L)())
((EQUAL (CAR L) S)(CDR L))
(T (CONS (CAR L) (REMBER S (CDR L))))

Now REMBER removes the first S-expression § in
the list L, instead of the first atom in the list

of atoms L.

Is REMBER a “star-" function? No.

Why not? , Because REMBER only recurses with the (CDR L).

Can we assume that all functions which were Not quite,
written using EQ and EQN can be generalized this won't work for EQAN or EQN, but will work for
by replacing EQ and EQN by the function EQUAL. all others. In fact, disregarding the trivial

examples of EQAN and EQN, that is exactly what we
shall assume. .

t ULL S) can actually be written as

((ATOM S) (EQ S NIL))

(T F)
)_))

44

If you got through that last function,

you need a rest.

This space for doodling.

CHAPTER 7: FRIENDS AND RELATIONS

7.1) Is this a set? F,
(APPLE PEACHES APPLE PLUM) since APPLE appears more than once.

7.2) (ISSET LAT), where T,
LAT is (APPLES PEACHES PEARS PLUMS), because no atom appears more than once.

7.3) (ISSET LAT), where T,
LAT is () because no atom appears more than once.

7.4) Try to write (ISSET LAT) (ISSET (LAMBDA (LAT)
(COND
((NULL LAT) T)
((MEMBER (CAR LAT) (CDR LAT)) F)
(T (ISSET (CDR LAT)))

) »))

7.5) Does this work for the example Yes,

(APPLE 3 PEAR 4 9 APPLE 3 4) since MEMBER is now written using EQUAL instead
of EQ. See 6.65.

7.6) Were you surprised to see the function MEMBER You srould not be, because we have written
appear in the function ISSET? (MEMBER A LAT) already, and now we can use it

whenever we Like.

7.7) What is (MAKESET LAT), where (APPLE PEACH PEAR PLUM LEMON)
LAT is (APPLE PEACH PEAR PEACH PLUM APPLE

LEMON PEACH) ‘

«

7.8) Try to write (MAKESET LAT), using MEMBER. (MAKESET (LAMBDA (LAT)
(COND

(QNULL LAT)())
((MEMBER (CAR LAT) (CDR LAT))(MAKESET (CDR LAT)))
(T (CONS (CAR LAT) (MAKESET (CDR LAT))))

)_»))

7.9) Using the function definition that you just wrote, (PEAR PLUM APPLE LEMMON PEACH)
what is the result of (MAKESET LAT), where

LAT is (APPLE PEACH PEAR PEACH PLUM APPLE

LEMON PEACH)

7.10) Try to write (MAKESET LAT), using MULTIREMBER. (MAKESET (LAMBDA (LAT)

(COND
CQNULL LAT) ())
(T (CONS (CAR LAT) (MAKESET (MULTIREMBER

(CAR LAT) (CDR LAT)))))

7.11) What is the result of (MAKESET LAT) using this (APPLE PEACH PEAR PLUM LEMON)

second definition, where

LAT is (APPLE PEACH PEAR PEACH PLUM APPLE
LEMON PEACH)

7.12) Can you describe in your own words how the second Here are our words:
definition of (MAKESET LAT) does what .it does? “MAKESET saves the first atom in the LAT, and

then recurses, after removing all occurrences

of the first atom from the rest of the LAT".

7.13) Does the second MAKESET work for the example Yes,
(APPLE 3 PEAR 4 9 APPLE 3 4) since MULTIREMBER is now written using EQUAL

instead of EQ.

46

7.14) What is (SUBSET SET1 SET2), where T,
SET1 is (5 CHICKEN WINGS), and because each atom in SET] is also in SET2.
SET2 is (5 HAMBURGERS 2 PIECES FRIED CHICKEN

AND LIGHT DUCKLING WINGS)

7.15) What is (SUBSET SET1 SET2), where F.
SET1 is (4 POUNDS OF HORSERADISH), and

SET2 is (FOUR POUNDS CHICKEN AND 5 OUNCES

HORSERADISH)

7.16) Try to write (SUBSET SET1 SET2). (SUBSET (LAMBDA (SET1 SET2)
(COND
(NULL SET1) T)
((MEMBER (CAR SET1) SET2)(SUBSET (CDR SET1) SET2))
(T F)

»)

or, you could have written:

(SUBSET (LAMBDA (SET1 SET2)
(COND
((NULL SET1) T)
(T (AND (MEMBER (CAR SET1) SET2) (SUBSET

(CDR SET1) SET2)))
) »))

7.17) What is (EQSET SET1 SET2), where T.
SET1 is (6 LARGE CHICKENS WITH WINGS)

SET2 is (6 CHICKENS WITH LARGE WINGS)

7.18) Try to write (EQSET SET1 SET2). (EQSET (LAMBDA (SET1 SET2)
(COND
((SUBSET SET1 SET2) (SUBSET SET2 SET1))
(T F)

»)

or, you could have written:

(EQSET (LAMBDA (SET1 SET2)
(COND
(T (AND (SUBSET SET1 SET2) (SUBSET SET2 SET1)))

or, you could have written the "one-liner"

(EQSET (LAMBDA (SET1 SET2)
(AND (SUBSET SET1 SET2) (SUBSET SET2 SET1))

’

7.19) (DOESINTERSECT SETI SET2), where T,
SET1 is (STEWED TOMATOES AND MACARONI), and because at least one atom in SET1 is in SET2.

SET2 is (MACARONI AND CHEESE) i

7.20) Try to write (DOESINTERSECT SET1 SET2). (DOESINTERSECT (LAMBDA (SET1 SET2)
(COND
((NULL SET1) F)
((MEMBER (CAR SET1) SET2) T)
(T (DOESINTERSECT (CDR SET1) SET2))

)_»)
or, you could have written:

(DOESINTERSECT (LAMBDA (SET1 SET2)
(COND
((NULL SET1) F)
(T (OR (MEMBER (CAR SET1) SET2) (DOESINTERSECT

(CDR SET1) SET2)))
)»))

Note: Look back at (SUBSET SET1 SET2), and

compare for similarities.

47

7.21) What is (INTERSECT SET] SET2), where (AND MACARONT)
SET1 is (STEWED TOMATOES AND MACARONI), and
SET2 is (MACARONI AND CHEESE)

7.22) Try to write (INTERSECT SET1 SET2) (INTERSECT (LAMBDA (SETL SET2)
(COND
((NULL SET1)())
((MEMBER (CAR SET1) SET2) (CONS (CAR SET1)

(INTERSECT (CDR SET1) SET2)))
(T (INTERSECT (CDR SET1) SET2))

) »)

or, you could have written

(INTERSECT (LAMBDA (SET1 SET2)
(COND
((NULL SET1)())
((NOT (MEMBER (CAR SET1) SET2)) (INTERSECT

(CDR SET1) SET2))
(P (CONS (CAR SET1) (INTERSECT (CDR SET1) SET2)))

7.23) What is (UNION SET1 SET2), where (STEWED TOMATOES CASSEROLE MACARONI AND CHEESE)

SET1 is (STEWED TOMATOES AND MACARONI CASSEROLE) ,

and
SET2 is (MACARONI AND CHEESE)

7.24) Try to write (UNION SET1 SET2). (UNION (LAMBDA (SET1 SET2)
(COND

((NULL SET1) SET2)
((MEMBER (CAR SET1) SET2) (UNION (CDR SET1) SET2))
(T (CONS (CAR SET1) (UNION (CDR SET1) SET2)))

)

7.25). What does this function do? In our words:

(XXX (LAMBDA (SET1 SET2) " The value of (XXX SET1 SET2) is all the atoms in

(COND SET1 that are not in SET2."
((NULL SET1)()) (STEWED TOMATOES CASSEROLE)

((MEMBER (CAR SET1) SET2)(Xxx (CDR SET1) SET2)) WO ee ort es SET2) caw bexcal ted
(T (CONS (CAR SET1) (XXX (CDR SET1) SET2)))

7.26) Is this a pair? T,
(PEAR PEAR) because it is a list with only two atoms.

7.27) Is this a pair? T.

(3 7)

7.28) Is this a pair? T.
(3 PAIR)

7.29) How can you get a hold of the first atom of a pair? By taking the CAR of the pair.

7.30) How can you get a hold of the second atom of a pair? By taking the CAR of the CDR of the pair.

7.31) If you are given two atoms, Al and A2, how do you You CONS the first atom onto the CONS of the

make them a pair? second atom onto ().
(CONS Al (CONS A2()))

7.32) (FIRST (LAMBDA (P) They will be used for convenience and readability,
(COND , as you will soon see.

(T (CAR P))
)_))

(SECOND (LAMBDA (P)
(COND
(T (CAR (CDR P)))

)_))

BUILD (LAMBDA (Al A2)
(COND
(T (CONS Al (CONS A2 ())))

» »)

What possible uses do these three functions have?

48

7.33) Is L a REL, where F,
L is (APPLES PEACHES PUMPKIN PIE) since L is not a list of pairs.

Note: REL stands for RELation.

7.34) Is L a REL, where F,
L is ((APPLES PEACHES) (PUMPKIN PIE) (APPLES since L is not a set of pairs.

PEACHES))

7.35) Is L a REL, where T.

L is ((APPLES PEACHES) (PUMPKIN PIE))

7.36) Is L a REL, where T.

L is ((4 3)(4 2)(7 6)(6 2)(3 4))

7.37) Is REL a FUN, where F,

REL is ((4 3)(4 2)(7 6)(6 2)(3 4)) Note: FUN stands for FUNction.

7.38) What is (ISFUN REL), where Tt,
REL is ((12 3)(4 2)(7 6)(6 2)(3 4)) because (FIRSTS REL) is a set - see Chapter 3.

7.39) Try to write (ISFUN REL). How about this?

(ISFUN (LAMBDA (REL)
(COND
((NULL REL) T)
((MEMBER* (FIRST (CAR REL))(CDR REL)) F)

-(T (ISFUN (CDR REL)))

7.40) When will that function description for ISFUN work? When (DOESINTERSECT (FIRSTS REL) (SECONDS REL)) is F.

7.41) Try again to write (ISFUN REL) so it will work (ISFUN (LAMBDA (REL)
for the case where (COND

REL is ((12 3)(4 2)(7 6)(6 2)(3 4)) C(NULL REL) T)
((MEMBER (FIRST (CAR REL)) (FIRSTS (CDR REL))) F)

(Tf CISFUN (CDR REL)))

or, much better

(ISFUN (LAMBDA (REL)
(COND
(f (ISSET (FIRSTS REL)))

)))

7.42) What is (REVREL REL), where ((A 8) (PIE PUMPKIN) (SICK GOT))
REL is ((8 A) (PUMPKIN PIE)(GOT SICK))

7.43) Try to write (REVREL REL). (REVREL (LAMBDA (REL)
(COND
C(NULL REL)())
(T (CONS (BUILD (SECOND (CAR REL)) (FIRST (CAR EEL): ~

(REVREL (CDR REL))))

)_))

or, the following would also be correct:

(REVREL (LAMBDA (REL)
(COND
((NULL REL)())
(T (CONS (CONS (CAR (CDR (CAR REL)))

(CONS (CAR (CAR REL))()))(REVREL (COE I=.

)

Note: Now you know what we mean by cosvwemiemce

and readability.

49

7.44)

7.45)

7.46)

7.47)

7.48)

7.49)

Can you guess why FUN is not a FULLFUN, where FUN is not a FULLFUN, since the 2 appears more than

FUN is ((12 3)(4 2)(7 6)(6 2)(3 4)) once as a second atom of a pair.

Why does (ISFULLFUN FUN) have the value T, where Because the list (3 8 6 2 4) is a set.
FUN is ((12 3)(4 8)(7 6)(6 2)(3 4))

What is (ISFULLFUN FUN), where F,
FUN is ((GRAPE RAISIN) (PLUM PRUNE) (STEWED PRUNE))

What is (ISFULLFUN FUN), where T,
FUN is ((GRAPE RAISIN) (PLUM PRUNE) (STEWED GRAPE)) because the list (RAISIN PRUNE GRAPE) is a set.

Try to write (ISFULLFUN FUN) three different ways. (ISFULLFUN (LAMBDA (FUN)
(COND
((NULL FUN) T)
((MEMBER (SECOND (CAR FUN)) (SECONDS (CDR FUN))) FP)
(T (ISFULLFUN (CDR FUN)))

(ISFULLFUN (LAMBDA (FUN)
(COND
(Tf (ISSET (SECONDS FUN)))

(T (ISFUN (REVREL FUN)))
) »)

What is another function name for (ONE-TO-ONE FUN).

(ISFULLFUN FUN)

If the three ways you just wrote that last function were:

1. Sitting down

2. Standing up

3. Standing on your head

you were wrong!

50

8.1)

8.2)

8.3)

8.4)

8.5)

8.6)

8.7)

8.8)

8.9)

8.10)

8.11)

8.12)

8.13)

CHAPTER 8: “HELP IS ON THE WAY, OR WELCOME TO THE HAMMOCK

Is this a palindrome? Yes.
(APPLE BANANA BANANA APPLE)

(ISPALIN L), where T.
Lis (A5 4MKM45 A)

(ISPALIN L), where T.
L is (HARRY)

(ISPALIN L), where F.
Lis (HARRY)

The function finds if L is a palindrome. (ISPALIN (LAMBDA (L)
(COND
((NULL L) T)
((NULL (CDR L)) T)
((EQUAL (CAR L)(RAC L))(ISPALIN (CDR (RDC L))))
(I F)

)))

What does this function do?

What is (RAC L) 2 (RAC L) is a help function. We don't know ret
what it looks like, but we know it will be 2

function that will give us the last atom ia a

list.

Have we used any help functions before in this book? Yes,
every time we used a function other than Caz. =

CONS, EQ, ATOM, NULL, AND, OR, SOT, SC3ET?.
ZEROP, ADD1, and SUB1 to define another fumct:m

we were using help functions!

Can you name some help functions we used in the FIRST, SECOND, BUILD, FIRSTS, SECONDS, MEXGEZ,

last chapter? EQUAL, SUBSET, ISSET, and MULTIREMBER. Ca vrru
name some other functions we failed to sewerima!

What is (RDC L) ? RDC is a help function. We don't know vee wrac
Note: "RDC" is pronounced "Rudercouder". it looks like, but we know it will be a Samctim

that will give us all the atoms in the list,

without the RAC.

Shall we write RAC and RDC now? No.

ISPALIN is written. We know what RAC amé EDC ao,

so we can write them later.

What is (REVLAT LAT), where (COCONUTS OF BUNCH A)
LAT is (A BUNCH OF COCONUTS)

Here is one way to write (REVLAT LAT): Yes.

(REVLAT (LAMBDA (LAT)
(COND

((NULL LAT) ())
(T (SNOC (REVLAT (CDR LAT)) (CAR LAT)))

)

Is this correct?

What does the function (SNOC L S) do? SNOC is a help function. We do not know what

it looks like yet, but we know we need a function

1 that sticks S-expression onto the end of a list,
similar to the way CONS sticks S-expressions onto
the front of a list. So for now, we will assume

SNOC exists, and we will write it later.

8.14)

8.15)

8.16)

8.17)

8.18)

8.19)

8.20)

8.21)

8.22)

8.23)

8.24)

8.25)

8.26)

8.27)

8.28)

COMMANDMENT No. 7

Thou shalt always assume that any help function you need

does exist. If you can describe what the help function

does, then use it, and you can write it later.

Is this a MAT?
((4 8 6 3)(12 4 86 2)(36 1 7 6))

Yes,

because it is a list of VECs.

Note: MAT stands for MATrix.

Is this a MAT?
((16 3 2)(4 7. 6) (14 8))

No,
since not all the VECs are of the same length.

Is this a ZEROMAT?
((O 0 0)(0 1 0)(0 0 0) (0 0 0))

(ISZEROMAT MAT), where
MAT is ((000000)(000000)(00000 0))

Try to write (ISZEROMAT MAT).

No,

since not all the atoms of every VEC are zero.

Yes,

because all the VECs are ZEROVECs.

(ISZEROMAT (LAMBDA (MAT)

(COND
(QNULL MAT) T)
(T (AND (ISZEROVEC (CAR MAT))(ISZEROMAT (CDR MAT))))

>»)

or, you could have written

(ISZEROMAT (LAMBDA (MAT)
(COND
((NULL MAT) T)
(CISZEROVEC (CAR MAT)) (ISZEROMAT (CDR MAT)))

(Tt F)
)»)

What is (ISZEROVEC VEC) ?

What does (ISZEROVEC VEC) do?

(ISZEROVEC VEC), where
VEC is (0 0 0)

(ISZEROVEC VEC), where

VEC is (0 0 0 0)

(ISZEROVEC VEC), where
VEC is (0 0)

Is this a MAT?

((0 0 0)(0 0 0 0) (0 0))

It is a help function.

It asks if a VEC is the ZEROVEC - if all the atoms
in the VEC are zero.

T.

No

since all the VECs are not of the same length.

What would be the value of (ISZEROMAT L), where
L is ((0 0 0)(0 0 0 0)(0 0))

T,
because, even though L is not a MAT, ISZEROMAT
only asks if each VEC is a ZEROVEC by considering
each VEC in total isolation.

What is (SCALMAT N MAT), where
N is 3, and

MAT is ((6 3 2)(5 12 7)(3 2 6))

What is (SCALMAT N MAT), where
N is 56, and

MAT is ((1)(2) (5) (7) (4))

Can you write (SCALMAT N MAT) ?

((18 9 6)(15 36 21)(9 6 18))

((56) (112) (280) (392) (224))

(SCALMAT (LAMBDA (N MAT)
(COND
((NULL MAT) ())
(T (CONS (SCALVEC N (CAR MAT))(SCALMAT N (CDR MAT))))

)_»)

8.29) What is (SCALVEC N.VEC) ? It is a help function.

8.30) What will (SCALVEC N VEC) do? It will multiply each atom in the argument VEC
by the argument N.

8.31) Is L a MAT, where No.
Lis ((6 3 4)(8 2)(12 13 7))

8.32) What is the value of (SCALMAT N L), where ((30 15 20)(40 10)(60 65 35))
N is 5, and L is not a MAT, but the help function (SCALVEC N VEC)

Lis ((6 3 4)(8 2)(12 13. 7)) considers each VEC one at a time - in total

isolation.

8.33) What is (MATPLUS MAT1 MAT2), where ((12 12 12)(12 12 18)(12 12 12)(12 12 12))
MATL is ((4 4 6)(3 12 15)(6 8 3)(4 4 6)), and
MAT2 is ((8 8 6)(9 O 3)(6 4 9)(8 8 6))

8.34) What is (MATPLUS MAT1 MAT2), where ((4 11 9 6)(11 14 4 12))
MAT1 is ((0 5 6 4)(3 2 1 6))
MAT2 is ((4 6 3 2)(8 12 3 6))

8.35) Can you write (MATPLUS MAT1 MAT2) ? (MATPLUS (LAMBDA (MAT1.MAT2)
(COND

((NULL MAT1)())
(T (CONS (VECPLUS (CAR MAT1) (CAR MAT2))

(MATPLUS (CDR MAT1) (CDR MAT2))))

) »))

8.36) What is (DIMENSIONS MAT), where (2 2)
MAT is ((4 6)(8 3))

8.37) What is (DIMENSIONS MAT), where (2 7)
MAT is ((6 9 3 4 12 2 37)(4 12 6 7 84 3 172))

8.38) What is (DIMENSIONS MAT), where ql 1)

MAT is ((4) (6) (5) (4) (2) (9) (12) (14) (26) (3) (1))

8.39) What is (DIMENSIONS MAT), where (1 9)
MAT is ((4 6 5 4 29 12 14 26 31))

8.40) What is (DIMENSIONS MAT), where (7 0)

MAT is (()€)€)€)0€)00)00€))

8.41) Try to write (DIMENSIONS MAT). (DIMENSIONS (LAMBDA (MAT)

Use any help functions you need. (COND ‘
(T (BUILD (LENGTH MAT) (LENGTH (CAR MAT))))

) »))

or, you could have written

(DIMENSIONS (LAMBDA (MAT)

(COND
(T (CONS (LENGTH MAT) (CONS (LENGTH (CAR MAT))())))

)))

8.42) What is (SORTUP VEC), where (3 4 6 8 9)
VEC is (3 9 4 8 6)

8.43 What is (SORTUP VEC), where (2 229 11 15)
VEC is (2 15 9 2 11 2)

8.44) Try to write (SORTUP VEC), using any help functions (SORTUP (LAMBDA (VEC)
you need. (COND

((NULL VEC) ())
(T (CONS (MINIVEC VEC) (SORTUP (REMBER (MINIVEC VEC)

"py

53

8.45)

8.46)

8.47)

8.48)

8.49)

8.50)

8.51)

8.52)

8.53)

8.54)

8.55)

8.56)

8.57)

8.58)

8.59)

What does our help function (MINIVEC VEC) do? It finds the smallest number in the VEC. Although
we have not seen (MINIVEC VEC) yet, writing it
later should be trivial - remember MAXVEC in
Chapter 4?

What is (MINSMAT MAT), where (3 0)
MAT is ((3 6 9)(4 2 0))

What is (MINSMAT MAT), where (211)
MAT is ((2 6 7 9)(11 1 3 4)(1 9 12 15))

Now try to write (MINSMAT MAT). (MINSMAT (LAMBDA (MAT)
(COND

((NULL MAT) ())
(t acne ner (CAR MAT)) (MINSMAT (CDR MAT))))

)

What does (MINSMAT MAT) do? (MINSMAT MAT) builds a VEC composed of the smallest

number in each VEC of the MAT.

Here is the function (NONAME MAT); what does it do? We are not sure, but let's find out.

(NONAME (LAMBDA (MAT)
(COND
((NULL (CAR MAT))())
(f (CONS (MINIVEC (FIRSTS MAT)) (NONAME (CDRVEX

my
What does (MINIVEC (FIRSTS MAT)) do? It finds the smallest atom in the list composed

of the CAR of each VEC of the MAT.

What is (MINIVEC (FIRSTS MAT)), where 3
MAT is ((4 8 2)(6 12 2)(3 6 8))

What is the meaning of (NONAME (CDRVEX MAT)) ? The argument (CDRVEX MAT) should give us a list
composed of the CDR of each VEC of the MAT. With
this, we recurse.

What is (CDRVEX MAT), where ((8 3)(12 2)(6 8))
MAT is ((4 8 3)(6 12 2)(3 6 8))

What is (CARTES SET1 SET2), where ((HOME BROWN) (HOME RICE) (MADE BROWN) (MADE RICE)
SET] is (HOME MADE BREAD), and (BREAD BROWN) (BREAD RICE))
SET2 is (BROWN RICE)

What is (CARTES SET] SET2), where ((A HELP) (A 3)(A TIMES) (5 HELP)(5 3)(5 TIMES)
SET1 is (A 5 9 CORN), and (9 HELP) (9 3)(9 TIMES) (CORN HELP) (CORN 3)
SET2 is (HELP 3 TIMES) (CORN TIMES))

Can you write in your own words what , Our words:
(CARTES SET1 SET2) “CARTES builds a REL composed of all possible pairs

does? choosing first elements from SET1 and second elements
from SET2."

Now write (CARTES SET1 SET2). (CARTES (LAMBDA (SET1 SET2)
(COND
((NULL SET1)())
(T (APPEND (DISTRIB (CAR SET1) SET2) (CARTES

(CDR SET1) SET2)))
) »))

What is (INTERSECTALL LSET), where (A)

LSET is ((A B C)(C AD E)(E F GHA B)))

8.60) What is (INTERSECTALL LSET), where (6 AND)

LSET is ((6 PEARS AND) (3 PEACHES AND 6 PEPPERS)

(8 PEARS AND 6 PLUMS) (AND 6 PRUNES WITH LOTS

OF APPLES))

INTERSECTALL (LAMBDA (LSET)
(COND
((NULL LSET)())
(T (INTERSECT (CAR LSET)(INTERSECTALL (CDR LSET))))

) »)

8.61) Now, using whatever help functions you need, write
(INTERSECTALL LSET).

8.62) What is (TRANSPOSE MAT), where ((4 29 4)(3 71 2)(2 6 4 6)(1 8 3 7))
MAT is ((4 3 2. 1)(2 76 8)(9 1 4 3)(4 2 6 7))

8.63) What is (TRANSPOSE MAT), where ((2121:1)(2 2 2 2)(3 3 3 3))
MAT is ((1 2 3)(1 2 3)(2 2 3)(1.2 3))

8.64) In your own words, what does (TRANSPOSE MAT) do? Our words, again:
“TRANSPOSE builds a new MAT. The first VEC in
this new MAT is (FIRSTS MAT); the second VEC is

(SECONDS MAT), and so on."

‘ ‘

8.65) Try to write (TRANSPOSE MAT). How about:

(TRANSPOSE (LAMBDA (MAT)
(COND

((NULL MAT) ())
(T (CONS (FIRSTS MAT) (TRANSPOSE (CDRVEX MAT))))

») »))

8.66) Is that correct? Well . . . let's see.

8.67) (NULL MAT), where No.
MAT is ((3 2 4)(6 9 7))

8.68) (T (CONS (FIRSTS MAT)(TRANSPOSE (CDRVEX MAT)))) CONS (3 6) onto (TRANSPOSE (CDRVEX MAT))

8.69) What is (CDRVEX MAT) ? | ((2 4)(9 7))

8.70) (NULL MAT) No.

8.71) (T (CONS (FIRSTS MAT) (TRANSPOSE (CDRVEX MAT)))) CONS (2 9) onto (TRANSPOSE (CDRVEX MAT))

8.72) What is (CDRVEX MAT) 2 ((4)(7))

8.73) (NULL MAT) No.

8.74) (T (CONS (FIRSTS MAT) (TRANSPOSE (CDRVEX MAT)))) CONS (4 7) onto (TRANSPOSE (CDRVEX MAT))

8.75) What is (CDRVEX MAT) (C)€))

8.76) (NULL MAT) No.

8.77) What? Since each VEC of the MAT is the same length, we
have now considered all the atoms of each VEC,
but the MAT is not null; it is composed of null

VECs. We obviously need a terminal condition to
test when the VECs of the MAT are null.

8.78) Can you come up with something that would be a ((NULL (CAR MAT))())
correct terminal condition line?

8.79)

8.80)

8.81)

8.82)

8.83)

8.84)

8.85)

8.86)

Now what is the correct function definition of

(TRANSPOSE MAT)

Now can you rewrite (NONAME MAT) using
(TRANSPOSE MAT) and (MINSMAT MAT) as help functions?

(TRANSPOSE (LAMBDA (MAT)
(COND
((NULL (CAR MAT))())
(T (CONS (FIRSTS MAT) (TRANSPOSE (CDRVEX MAT))))

>)»

(NONAME (LAMBDA (MAT)
(COND
(T (MINSMAT (TRANSPOSE MAT)))

Now was that more straightforward? Correct.

This could he The End of the book, but we decided
to give you all the help functions we have not yet
defined. They are RAC, RDC, SNOC, MINIVEC,

CDRVEX, APPEND, and DISTRIB. Do we need to refer

back to the functions that used these help functions
in order to write them?

No,

you must write the help functions in total isolation,
that is, you need to know only two things:

1. The arguments of the help function;
2. What the help function should do.

COMMANDMENT No. 8

Thou shalt, when writing a function which requires one or more help functions,

complete the main function first. Make a note of the arguments and a description

of what the help function should do. LATER, write the help function in total

isolation from the main function.

Write the description of the function (RAC L), which
1. Takes a non-null list as an argument, and
2. Has a final value which is the last

S-expression in the list.

(RAC (LAMBDA (L)
(COND
((NULL (CDR L)) (CAR L))
(Tf (RAC (CDR L)))

Write the description of the function (RDC L), which
1. Takes a non-null list as an argument, and

2. Has a final value which is the same L, but
without (RAC L).

(RDC (LAMBDA (L)
(COND
((NULL (CDR L))())
(f (CONS (CAR L)(RDC (CDR L))))

)))

Write the description of the function (SNOC L S),

which
1. Takes a list and an S-expression as its

arguments, and

2. Builds a list by sticking its S-expression
argument onto the end of its list argument.

(SNOC (LAMBDA (L S)
(COND
((NULL L)(CONS § ()))
(T (CONS (CAR L)(SNOC (CDR L))))

) ») :

Write the description of the function (MINIVEC VEC)

which

1. Takes a non-null VEC as its argument, and
2. Has as its final value the smallest atom

in the VEC.

(MINIVEC (LAMBDA (VEC)
(COND
((NULL (CDR VEC)) (CAR VEC))
(T (SMALLER (CAR VEC) (MINIVEC (CDR VEC))))

)))

Sometime we neéd to write the function
(SMALLER Nl N2)

which

1. Takes two numbers as its arguments, and
2. Has the value of the smaller of the two

numbers:

(SMALLER (LAMBDA (N1 N2)
(COND
((LESSP Nl N2) Ni)
(T N2)

)_»))

56

8.87)

8.88)

8.89)

8.90)

8.91)

8.92

Write a description of the function (CDRVEX MAT), (CDRVEX (LAMBDA (MAT)
which (COND

1. Takes a MAT as its argument, and (CNULL MAT) ())
2. Has as its final value a list of the CDRs (T (CONS (CDR (CAR MAT))(CDRVEX (CDR MAT))))

of each VEC of the MAT.) »y

Now write the description of the function (APPEND (LAMBDA (L1 L2)
(APPEND Ll L2), which (COND

1. Takes two lists as its arguments, and ((NULL L1) L2)
2. Has as its final value one list containing (T (CONS (CAR L1) (APPEND (CDR L1) L2)))

all the S-expressions of L1 and L2, in their ») »

original orders.
Example: where

Ll is (APPLES BANANAS CHICKENS), and

L2 is (DOGS EGGS FRUIT GRAPE)

then ;
(APPEND Ll L2) is

(APPLES BANANAS CHICKENS DOGS EGGS FRUIT GRAPE)

Now write the description of the function (DISTRIB (LAMBDA (A SET)

(DISTRIB A SET), which (COND

1. Takes an atom and a set as arguments, and (C(NULL SET) ())
2. Builds a REL where each pair has A as its (T (CONS (BUILD A (CAR SET)) (DISTRIB A (CDR SET))))

first atom, and a member of the set as its
second atom.

Now write the description of the function (ISZEROVEC (LAMBDA (VEC)

(ISZEROVEC VEC), which . (COND

1. Takes a VEC as its argument, and ((NULL VEC) T)
2. Has as its value F if the vector contains ((ZEROP (CAR VEC))(ISZEROVEC (CDR VEC)))

some number other than 0. (T F)

»»

Now write the description of the function (SCALVEC (LAMBDA (N VEC)

(SCALVEC N VEC), which (COND

1. Takes a number and a VEC as its argument, and ((NULL VEC)())
2. Builds a VEC with each value multiplied (T (CONS (TIMES N (CAR VEC))

by N. (SCALVEC N (CDR VEC))))

Example: where dy»)
N is 12, and
VEC is (2 8 15)

then
(SCALVEC N VEC) is

(24 96 180)

Now that you have come this far, here is a real (DEPTH (LAMBDA (L)
brainteaser. Write the function (DEPTH L). (COND
(DEPTH L) is 3, where L is ((A) (((B) C)) D) CC(NULL L) 0)

is 5, where L is ((((((A))))) A ((B))) ((ATOM (CAR L)) (DEPTH (CDR L)))
is 1, where L is ((ATE) TOO (MUCH)) ((GREATERP (ADD1 (DEPTH (CAR L))) (DEPTH (CDR L)))

is 0, where L is (A B C) (ADD1 (DEPTH (CAR L))))
This is a hammock problem, so give yourself some time. (T (DEPTH (CDR L)))

>»)

57

CONCLUSIONS

You have reached the end of your beginning with LISP.

Are you now ready to tackle

a major programming problem in LISP’? You are actually

What should you have learned?

better prepared than you realize, but it would be worth

your time to develop a fuller understanding of all the

capabilities in LISP. For those of you who are intrigued

with computer programming and would like to learn more

about LISP, the books in the references, with the

exception of Suppes [6] offer a complete coverage of

the subject. Weissman [7], and Sikléssy [5] offer

the next level of sophistication to the understanding of

LISP. Maurer [3] is a good introduction to LISP for

a competent computer programmer. Berkeley [1] and

Minsky [4] have some interesting illustrations of

LISP and McCarthy [2] is the definitive work on LISP

from which these texts have evolved. For those

tohe only function you must also be familiar with
before you can interact with the computer is the
function DEFINE. See page 15 of McCarthy [2] or page
67 of Weissman [6] for an example with DEFINE.

REFERENCES

[1] Berkeley, E. C., and Bobrow, D. G., (eds), The
Programming Language LISP: Its Operation and
Applications, Information International, Inc.,

Cambridge, Massachusetts, 1964.

[2] McCarthy, J., et al., LISP 1.5 Programmer's
Manual, The M.I.T. Press, Cambridge,
Massachusetts, 1963.

(3] Maurer, W. D., A Programmer's Introduction
to LISP, American Elsevier, New York, New York,
1973.

{4] Minsky, M., (ed), Semantic Information
Processing, The M.1I.T. Press, Cambridge,
Massachusetts, 1968.

[5] Sikléssy, L. S., Let's Talk LISP, Prentice-
Hall, Englewood Cliffs, New Jersey,
(in preparation).

[6] Suppes, P., Introduction to Logic, Van Nostrand
Co., Princeton, New Jersey, 1957.

{7] Weissman, C., LISP 1.5 Primer, Dickenson
Publishing Co., Belmont, California, 1968.

58

others of you who do not foresee any further study

of the subject, we certainly hope you have enjoyed

the book and learned some interesting new things

about symbol manipulation.

The Little LISPer is a programmer's guide aimed

at the non-programmer. As such it offers an easily

digested introduction to computers and symbolic and

numeric processing. The goal of this book is largely

to teach you a new way to think about and solve

problems. LISP as a programming language is one way

to implement your solution - but it is most important

because the LISP experience teaches you this new and

powerful technique for approaching and analyzing

problems. LISP is a simple, elegant and powerful

language; as such it is conceivable that (as one of the

reviewers puts it) The Little LISPer (and therefore

LISP) can be understood by "any logical human being from

8 to 80."

456/54321

tabs Ss
ae

, ats eA

